Offshore Hydromechanics Part 2

Ir. Peter Naaijen

7. Summary and Internal Forces

OE 4630 2012 - 2013 Offshore Hydromechanics, lecture 1

Take your laptop, i- or whatever smart-phone and go to: www.rwpoll.com Login with session ID

TuDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2

OE4630 module II course content

- +/- 7 Lectures
- Bonus assignments (optional, contributes 20% of your exam grade)
- Laboratory Excercise (starting 30 nov)
 - 1 of the bonus assignments is dedicated to this exercise
 - Groups of 7 students
 - · Subscription available soon on BB
- Written exam

TUDelft;

OE4630 2012-2013, Offshore Hydromechanics, Part 2

Teacher module II: Ir. Peter Naaijen p.naaijen@tudelft.nl

- Room 34 B-0-360 (next to towing tank)

• Offshore Hydromechanics, by J.M.J. Journee & W.W.Massie

- Useful weblinks:
 http://www.shipmotions.nl
 Blackboard

TUDelft:

OE4630 2012-2013, Offshore Hydromechanics, Part 2

Disclaimer: alw	ays track for (last m	inute) changes in location at	Version 1 (9-11-20) huidigeroosters.tude	
Date:	Time:	Type:	Teacher:	Location
Wed 14 Nov	13.30 - 16.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 14 Nov	16.30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ D (James Watt)
Fri 16 Nov	10.30 - 12.30	Lecture	Peter Naaijen	3mE-CZ 8 (Isaac Newton)
Mon 19 Nov	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 20 Nov	13.30 - 15.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ C (Daniel Bernoulli)
Wed 28 Nov	13.30-15.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 28 Nov	15,30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ D (James Watt)
Fri 30 Nov	10.30-13.00	Lab session	Peter Naaijen	Towing Tank
Mon 3 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 4 Dec	13.30-16.00	Lab session	Gideon Hertzberger	Towing Tank
Tue 4 Dec	16.30 - 17.30	Assignment assistance /Questions	Peter Naaijen	Room Peter Naaijen (34 B 0 360)
Mon 10 Dec	15.30 - 17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Mon 17 Dec	15.30 - 17.30	Lecture	Peter Naaijen	3mE-CZB (Isaac Newton)
Mon 7 Jan	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)

Lecture notes:

 Disclaimer: Not everything you (should) learn is in the lecture notes (lees: niet alles wat op het tentamen gevraagd kan worden staat in diktaat...) →

Make personal notes during lectures!!

Don't save your questions 'till the break →

Ask if anything is unclear

TuDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2

5

Introduction

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2

7

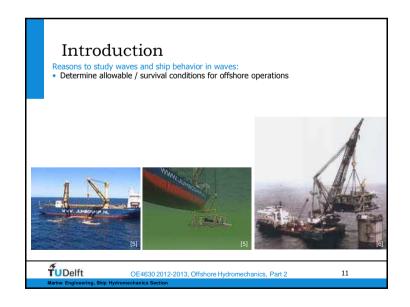
Learning goals Module II, behavior of floating bodies in waves Definition of ship motions Motion Response in regular waves: How to use RAO's · Understand the terms in the equation of motion: hydromechanic reaction forces, wave exciting forces How to solve RAO's from the equation of motion Motion Response in irregular waves: •How to determine response in irregular waves from RAO's and wave spectrum without forward speed 3D linear Potential Theory •How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential •How to determine Velocity Potential Motion Response in irregular waves: How to determine response in irregular waves from RAO's and wave spectrum with forward speed Make down time analysis using wave spectra, scatter diagram and RAO's Calculate internal forces and bending moments due to waves · Calculate mean horizontal wave force on wall · Use of time domain motion equation TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2

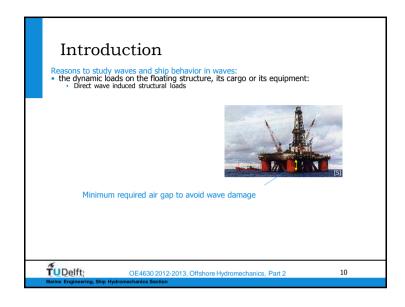
Introduction

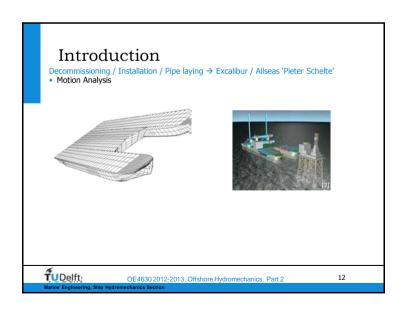
Offshore \to oil resources have to be explored in deeper water \to floating structures instead of bottom founded

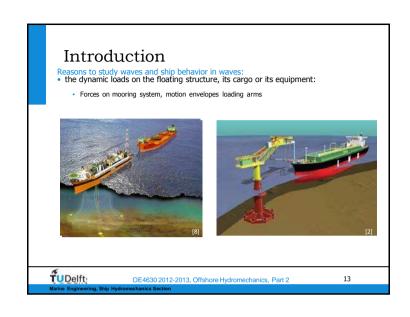
TuDelft

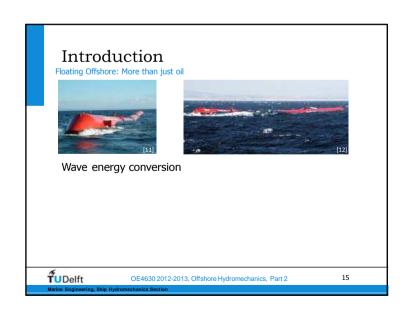
OE4630 2012-2013, Offshore Hydromechanics, Part 2

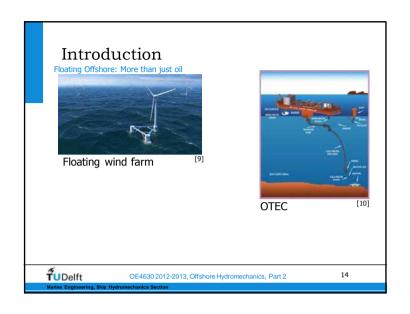


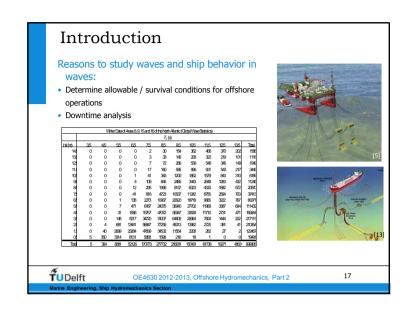


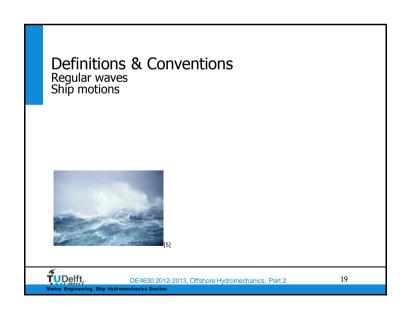


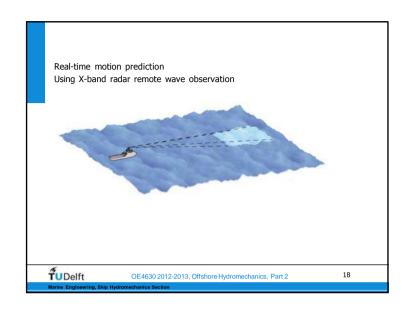


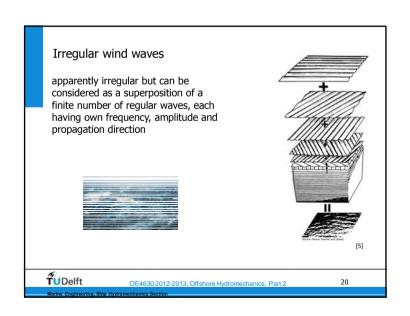








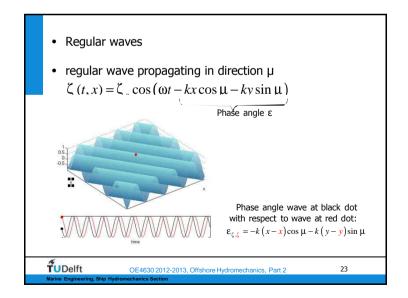


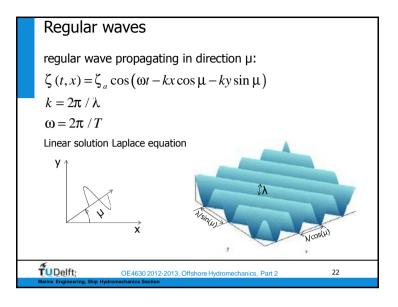


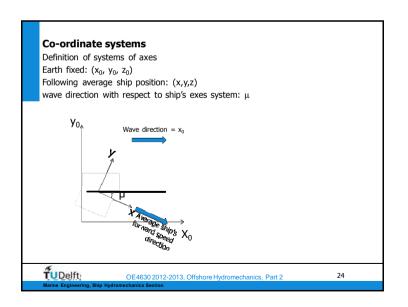
Regular waves

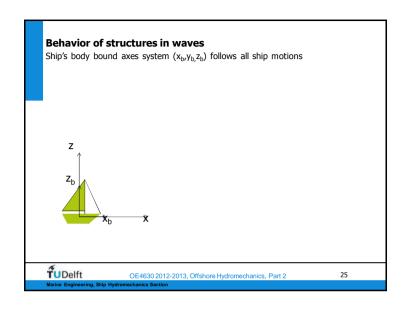
(Ch.5 revisited)

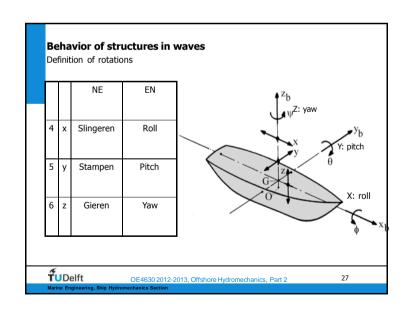
Full State of the Community of the Commun

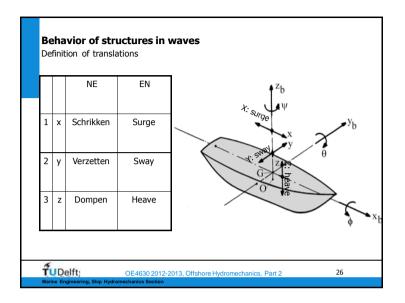


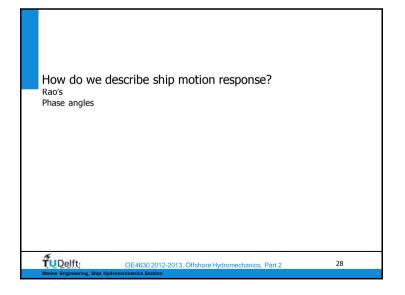


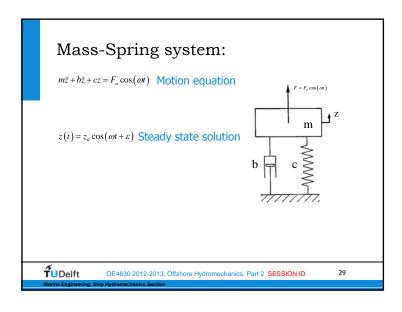


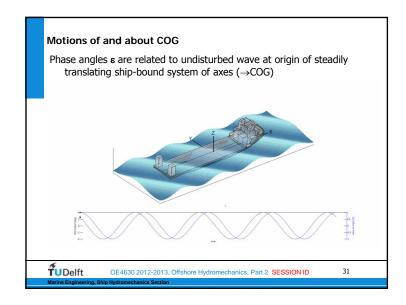












Motions of and about COG

Amplitude Phase angle

Surge(schrikken): $x = x_a \cos(\omega t + \varepsilon_{x\zeta})$

Sway(verzetten): $y = y_a \cos(\omega t + \varepsilon_{v\zeta})$

Heave(dompen): $z = z_a \cos(\omega t + \varepsilon_{z\zeta})$

Roll(rollen): $\langle phi \rangle \phi = \phi_a \cos(\omega t + \varepsilon_{\phi\zeta})$

Pitch(stampen): $\langle \text{theta} \rangle \theta = \theta_a \cos(\omega t + \varepsilon_{\theta \zeta})$

Yaw(gieren): $\langle psi \rangle \psi = \psi_a \cos(\omega t + \varepsilon_{\psi\zeta})$

Phase angles ϵ are related to undisturbed wave at origin of steadily translating ship-bound system of axes (\rightarrow COG)

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

30

Motions of and about COG

Surge(schrikken): $x = x_a \cos(\omega t + \varepsilon_{x\zeta})$ RAOSurge: $\frac{\lambda_a}{\zeta_a}(\omega, \mu)$

Sway(verzetten): $y = y_a \cos(\omega t + \varepsilon_{y\zeta})$ RAOSway: $\frac{y_a}{\zeta_a}(\omega, \mu)$

 $Heave(dompen): \quad z = z_a \cos\left(\omega t + \varepsilon_{z\zeta}\right) \qquad \qquad RAOHeave: \frac{z_a}{\zeta_a}(\omega, \mu)$

Roll(rollen): $\langle phi \rangle \phi = \phi_a \cos(\omega t + \varepsilon_{\phi\zeta})$ $RAORoll: \frac{\phi_a}{\zeta}(\omega, \mu)$

 $Pitch(stampen): \qquad \left< \text{theta} \right> \theta = \theta_a \cos \left(\omega t + \varepsilon_{\theta \zeta} \right) \qquad \textit{RAOPitch}: \frac{\theta_a}{\zeta_a}(\omega, \mu)$

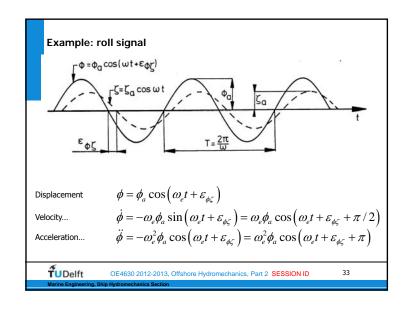
Yaw(gieren): $\langle psi \rangle \psi = \psi_a \cos(\omega t + \varepsilon_{\psi\zeta})$ $_{RAOYaw}: \frac{\psi_a}{\zeta_a}(\omega, \mu)$

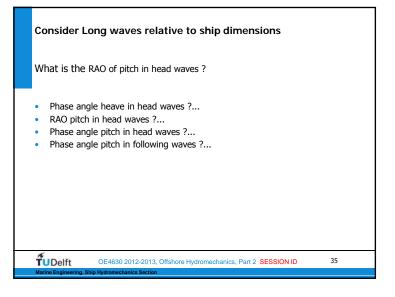
RAO and phase depend on:

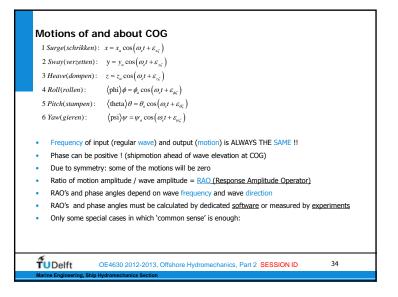
- Wave frequency
- Wave direction

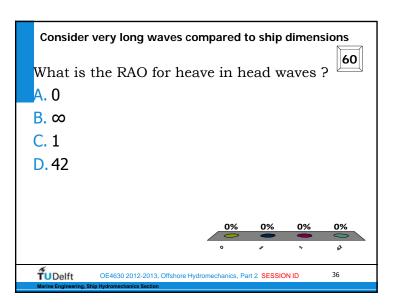
TUDelft

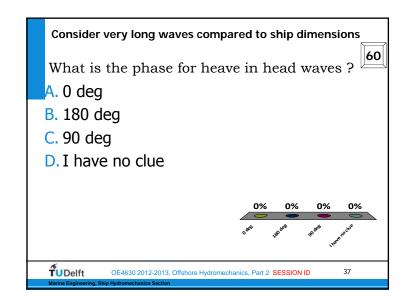
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

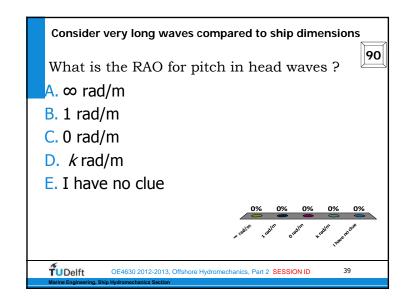


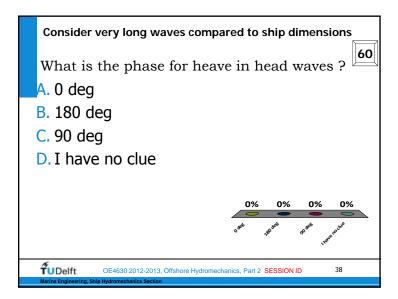


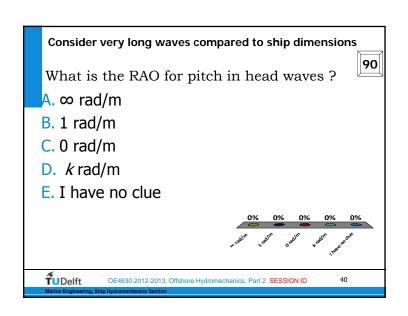




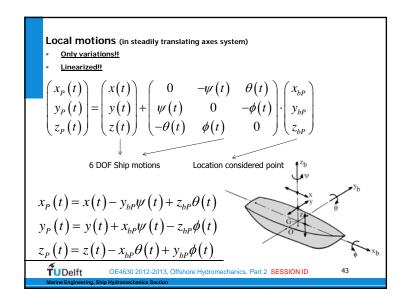


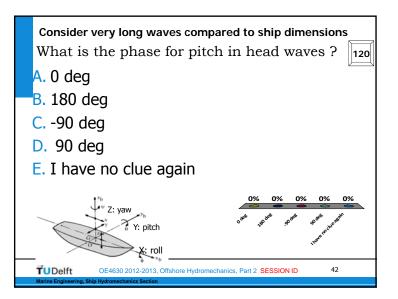


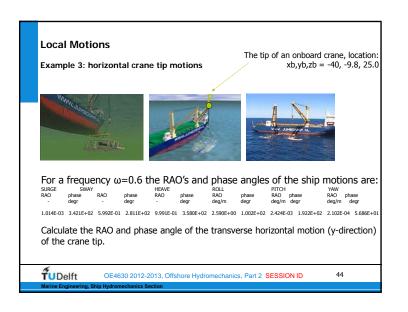




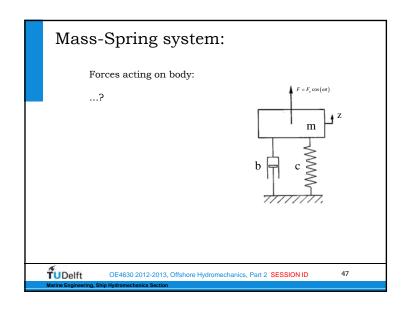
Consider very long waves compared to ship dimensions What is the phase for pitch in head waves? A. 0 deg B. 180 deg C. -90 deg D. 90 deg E. I have no clue again

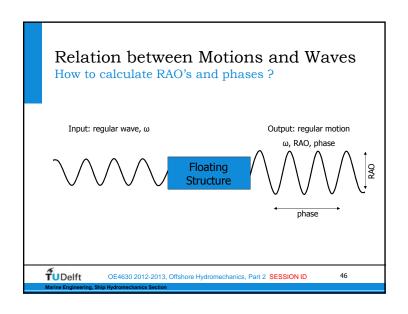


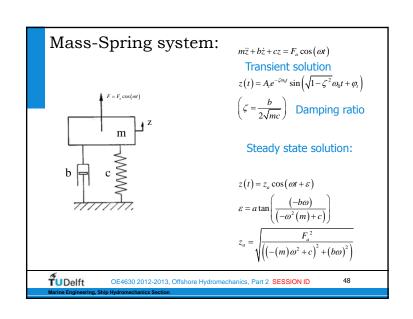


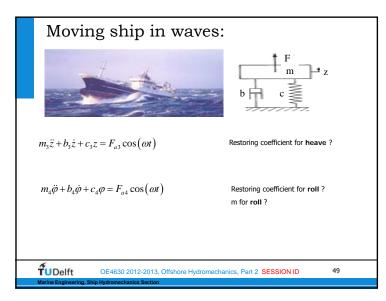


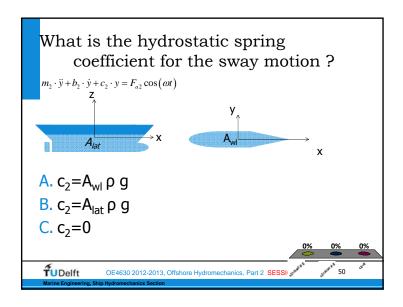
Complex notation of harmonic functions $1 \, Surge(schrikken) \colon \ x = x_a \cos \left(\omega_e t + \varepsilon_{x\zeta} \right) \\ = \operatorname{Re} \left(x_a e^{i(\omega t + \varepsilon_{x\zeta})} \right) \\ = \operatorname{Re} \left(x_a e^{i\varepsilon_{x\zeta}} \cdot e^{i\omega t} \right) \\ - \operatorname{Complex motion amplitude} \\ = \operatorname{Re} \left(\widehat{x_o} \cdot e^{i\omega t} \right)$ $\bullet \quad :$

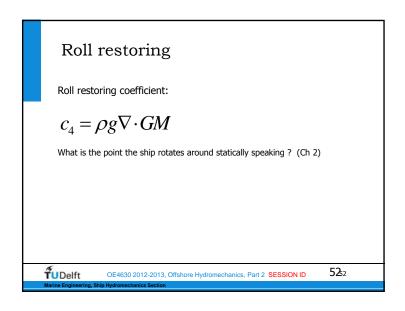


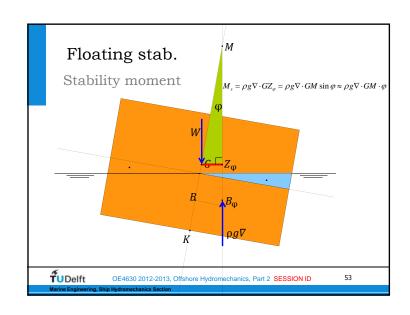


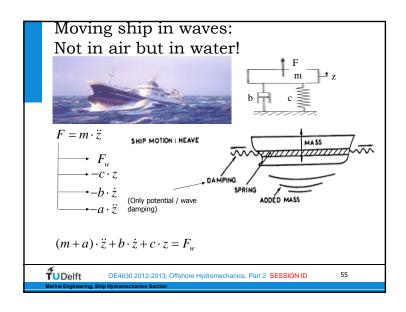


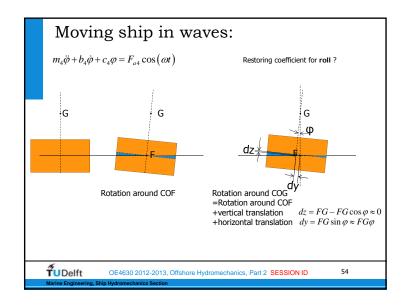


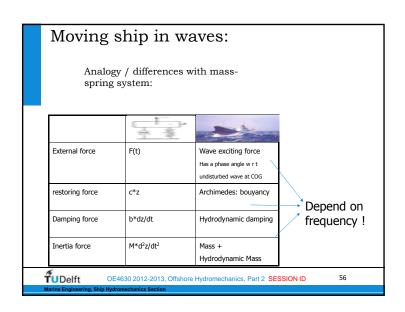


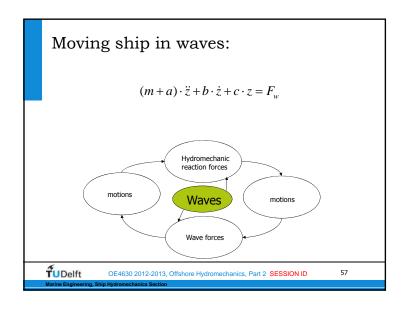


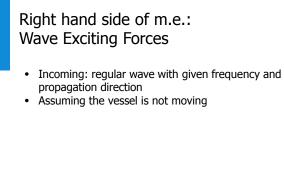








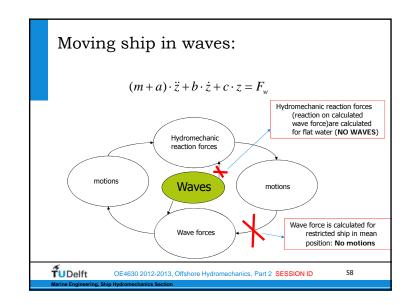


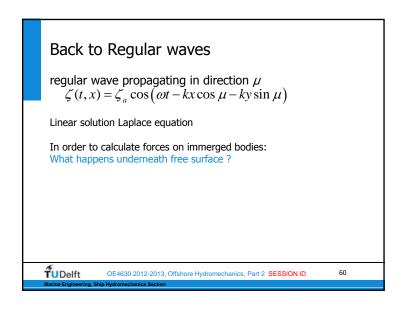


OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

59

TUDelft





Back to Regular waves

regular wave propagating in direction μ $\zeta(t,x) = \zeta_a \cos(\omega t - kx \cos \mu - ky \sin \mu)$

Linear solution Laplace equation

In order to calculate forces on immerged bodies: What happens underneath free surface ?

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

61

Marina Engineering Ship Hydromachanics Section

Navier-Stokes vergelijkingen:

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\lambda \nabla \cdot V + 2\mu \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[\lambda \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\lambda \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right]$$

$$\rho \frac{\partial v}{\partial t} + \rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \rho w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left(\lambda \nabla \cdot V + 2\mu \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right]$$

$$\rho \frac{\partial w}{\partial t} + \rho u \frac{\partial w}{\partial x} + \rho v \frac{\partial w}{\partial y} + \rho w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[\lambda \nabla \cdot V + 2\mu \frac{\partial w}{\partial z} \right]$$

(not relaxed)

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

63

Potential Theory

What is potential theory ?: way to give a mathematical description of flowfield

Most complete mathematical description of flow is viscous Navier-Stokes equation:

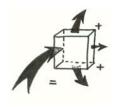
TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

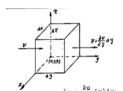
62

Water is hard to compress, we will assume this is impossible

Apply principle of continuity on control volume:



Continuity: what comes in, must go out



TUDelft 0E4

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

This results in continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

65

From definition of velocity potential:

$$u = \frac{\partial \Phi}{\partial x}, v = \frac{\partial \Phi}{\partial y}, w = \frac{\partial \Phi}{\partial z}$$

Substituting in continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Results in Laplace equation:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

67

If in addition the flow is considered to be irrotational and non viscous \rightarrow

Velocity potential function can be used to describe water motions Main property of velocity potential function:

for potential flow, a function $\Phi(x,y,z,t)$ exists whose derivative in a certain arbitrary direction equals the flow velocity in that direction. This function is called the velocity potential.

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

6

Summary

Potential theory is mathematical way to describe flow

Important facts about velocity potential function Φ :

- <u>definition</u>: $\boldsymbol{\varphi}$ is a function whose derivative in any direction equals the flow velocity in that direction
- $\bullet \ \Phi$ describes $\underline{\text{non-viscous}}$ flow
- Φ is a <u>scalar</u> function of space and time (NOT a vector!)

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

Summary

- <u>Velocity potential</u> for regular wave is obtained by
 - Solving <u>Laplace equation</u> satisfying:
 - 1. Seabed boundary condition
 - 2. Dynamic free surface condition

$$\Phi(x, y, z, t) = \frac{\zeta_a g}{\omega} \cdot e^{kz} \cdot \sin(kx \cos \mu + ky \sin \mu - \omega t)$$

$$\Phi(x, y, z, t) = \frac{\zeta_a g}{\omega} \cdot \frac{\cosh(k(h+z))}{\cosh(kh)} \cdot \sin(kx \cos \mu + ky \sin \mu - \omega t)$$

3. <u>Kinematic free surface boundary condition</u> results in:

<u>Dispersion relation</u> = relation between wave frequency and wave length

$$\omega^2 = kg \tanh(kh)$$

TUDelft

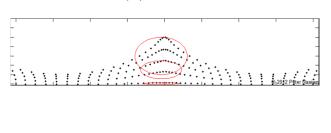
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

69

71

Water Particle Kinematics trajectories of water particles in <u>finite</u> water depth

$$\Phi(x, y, z, t) = \frac{\zeta_a g}{\omega} \cdot \frac{\cosh(k(h+z))}{\cosh(kh)} \cdot \sin(kx \cos \mu + ky \sin \mu - \omega t)$$



TUDelft

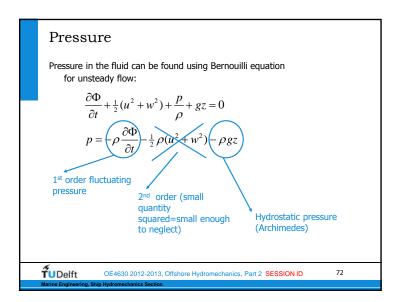
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

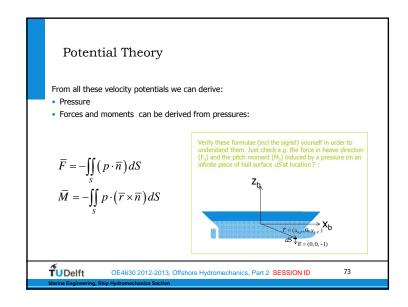
a. Ship Hydromechanics Section

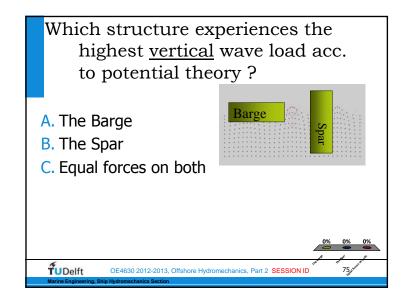
Water Particle Kinematics trajectories of water particles in infinite water depth $\Phi(x, y, z, t) = \frac{\zeta_a g}{\omega} \cdot e^{kz} \cdot \sin(kx \cos \mu + ky \sin \mu - \omega t)$

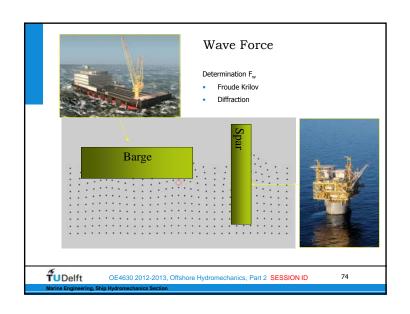
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

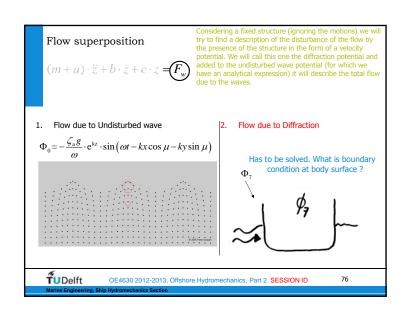
TUDelft

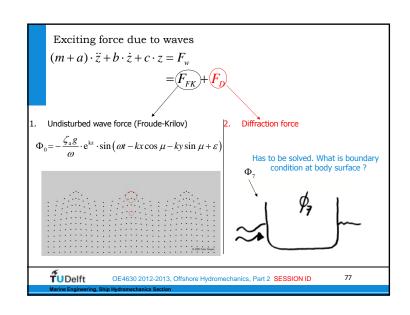


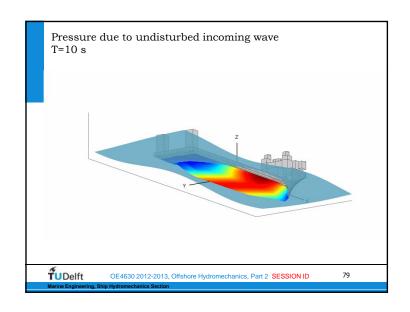


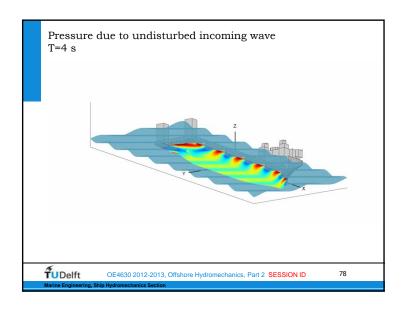


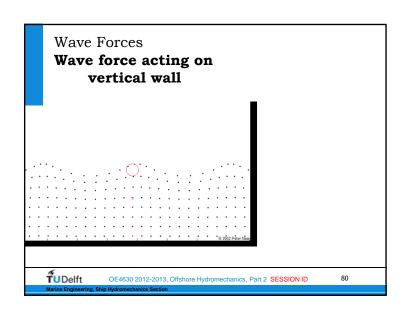


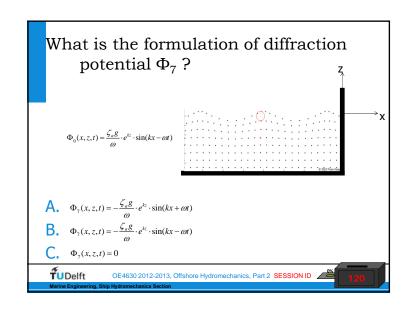


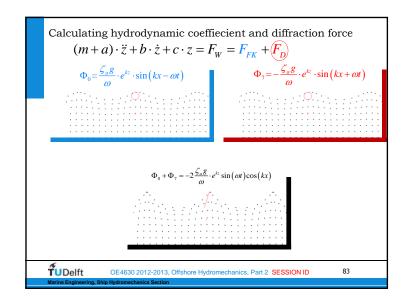


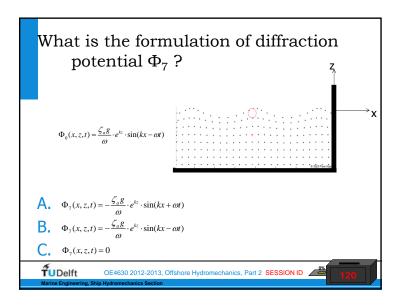


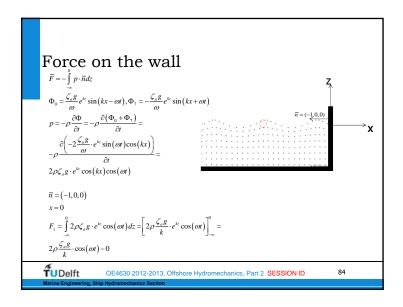








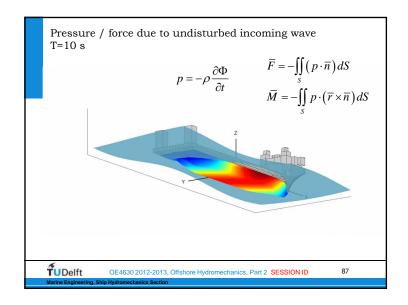


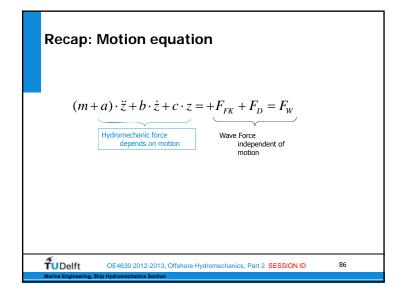


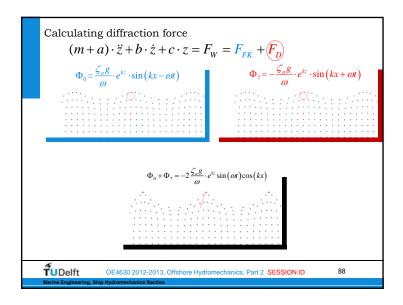
Left hand side of m.e.: Hydromechanic reaction forces

- NO incoming waves:
- Vessel moves with given frequency

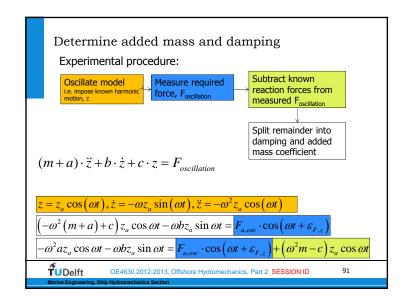
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 85

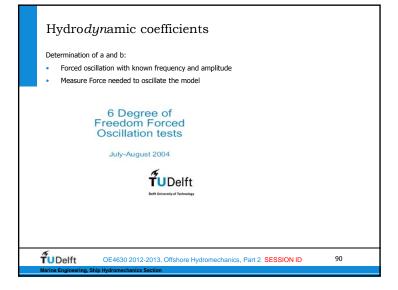


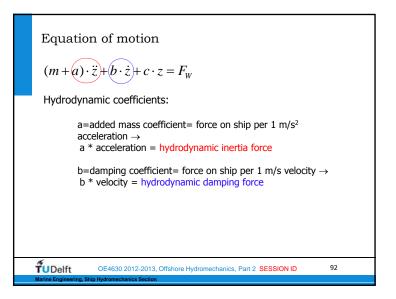


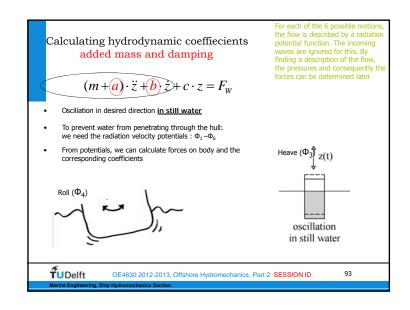


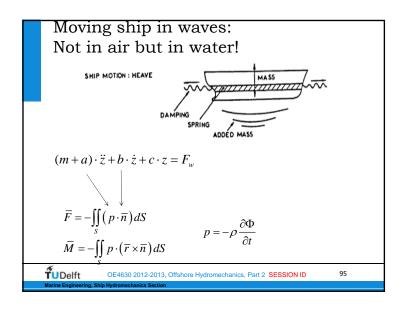
left hand side: reaction forces $(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = +F_{FK} + F_D = F_W$ Hydromechanic force depends on motion Wave Force independent of motion where the property of the prop

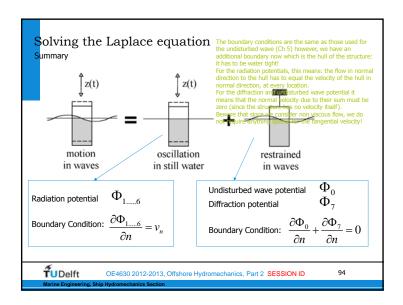


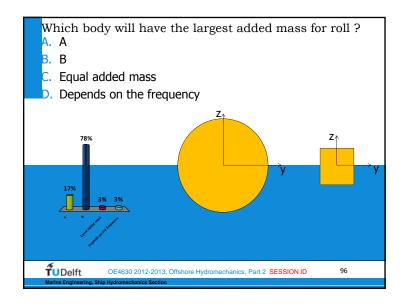












Equation of motion

$$(m+a)\cdot\ddot{z}+b\cdot\dot{z}+c\cdot z=+F_{FK}+F_D=F_W$$

To solve equation of motion for certain frequency:

- Determine spring coefficient:
 - $c \rightarrow$ follows from geometry of vessel
- Determine required hydro dynamic coefficients for desired frequency:
 - $\bullet \quad \text{ a, b} \to \text{computer / experiment}$
- Determine amplitude and phase of F_w of regular wave with amplitude =1:
 - Computer / experiment: F_w = F_{wa}cos(ωt+ε_{Fw,ξ})
- As we consider the response to a regular wave with frequency ω : Assume steady state response: $z=z_o\cos(\omega t+\epsilon_{z,t})$ and substitute in equation of motion:

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

97

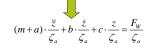
Marine Engineering, Ship Hydromechanics Section

Equation of motion

$$(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_w$$

Now solve the equation for the unknown motion amplitude z_a and phase angle $\epsilon_{z,\epsilon}$ for 1 frequency

If wave amplitude doubles \rightarrow wave force doubles \rightarrow motion doubles



Substitue solution $\frac{z}{\zeta_a} = \frac{z_a}{\zeta_a} \cos\left(\omega t + \varepsilon_{z,\zeta}\right)$ and solve RAO and phase

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

99

Equation of motion

$$\begin{split} &(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_W \\ &z = z_a \cos\left(\omega t + \varepsilon_{z,\zeta}\right) \\ &\dot{z} = -z_a \omega \sin\left(\omega t + \varepsilon_{z,\zeta}\right) \\ &\ddot{z} = -z_a \omega^2 \cos\left(\omega t + \varepsilon_{z,\zeta}\right) \\ &\left(c - \omega^2 (m+a)\right) \cdot z_a \cos\left(\omega t + \varepsilon_{z,\zeta}\right) + b \cdot -z_a \omega \sin\left(\omega t + \varepsilon_{z,\zeta}\right) = F_{Wa} \cos\left(\omega t + \varepsilon_{F_u,\zeta}\right) \end{split}$$

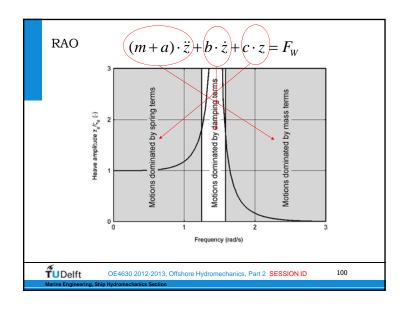
Now solve the equation for the unknown motion amplitude z_a and phase angle $\epsilon_{z,\epsilon}$

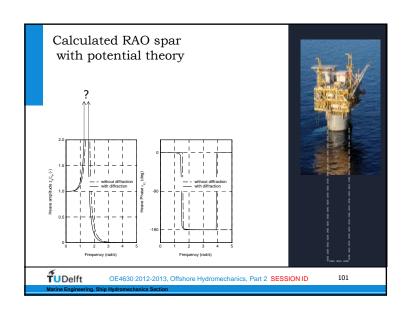
TUDelft

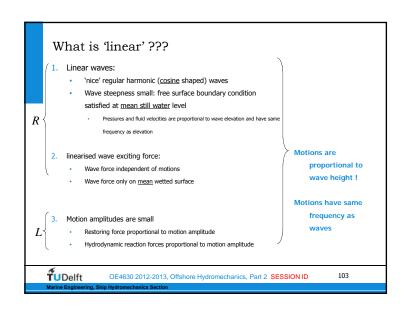
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

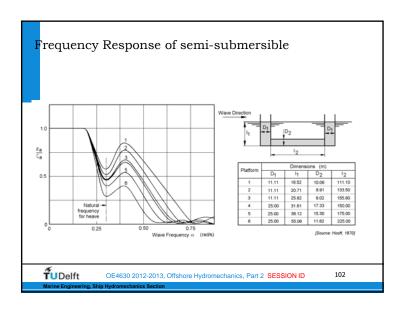
98

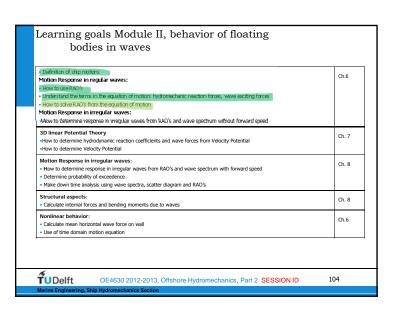
Marine Engineering, Ship Hydromechanics Section











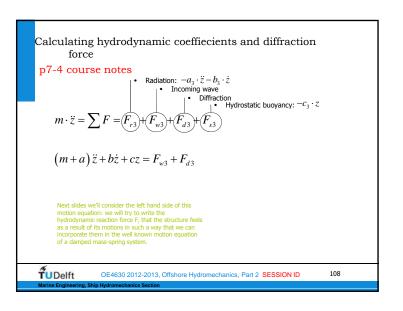
Definition of ship motions Motion Response in regular waves: How to use RAO's Understand the terms in the equation of motion; hydromechanic reaction forces, wave exciting forces How to stude RAO's from the equation of motion;				
Motion Response in irregular waves:				
3D linear Potential Theory How to determine Indicohnamic reaction coefficients and wave forces from Velocity Potential Today				
Motion Response in irregular waves: + How to determine response in irregular waves from RAO's and wave spectrum with forward speed - Determine probability of exceedence - Make down time analysis using wave spectra, scatter diagram and RAO's	Ch. 8			
Structural aspects: • Calculate internal forces and bending moments due to waves	Ch. 8			
Nonlinear behavior: • Calculate mean horizontal wave force on wall • Use of time domain motion equation	Ch.6			

Calculating hydrodynamic coefficients and diffraction force $(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_W = F_{FK} + F_D$ m and c = piece of cake $F_{FK} = \text{almost easy}$ a, b, and $F_D = \text{kind of difficult} \longrightarrow \text{Ch. 7}$

2D Potential theory (strip theory) p. 7-12 until p. 7-35 SKIP THIS PART

TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

Marine Engineering, Ship Hydromechanics Section



Calculating hydrodynamic coeffiecients and diffraction force

$$m \cdot \ddot{z} = \sum F = (F_{r3}) + F_{w3} + F_{d3} + F_{s3}$$

Radiation Force:

$$F_{r3} = -a_3 \cdot \ddot{z} - b_3 \cdot \dot{z}$$

To calculate force: first describe fluid motions due to given heave motion by means of radiation potential:

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

109

Potential theory

Radiation potential

$$(m+a)\cdot\ddot{z}+b\cdot\dot{z}+c\cdot z=F_w+F_d$$

Radiation potential heave $\Phi_3(x, y, z, t)$

$$\Phi_{2}(x, y, z, t)$$

flow due to motions, larger motions → 'more' flow

Problem: But we don't know the motions!! (we need the flow to calculate the motions...and we need the motions to calculate the flow...)

Solution: radiation potential is written as function of motion:

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

111

Potential theory

Radiation potential

$$(m+a)\cdot \ddot{z} + b\cdot \dot{z} + c\cdot z = F_w + F_d$$

Radiation potential heave $\Phi_3(x, y, z, t)$

= flow due to heave motion

Knowing the potential, calculating resulting force is straight forward:

$$\overline{F} = -\iint_{S} (p \cdot \overline{n}) dS$$

$$\overline{M} = -\iint_{S} p \cdot (\overline{r} \times \overline{n}) dS$$

$$\overline{M} = \iint_{S} \rho \frac{\partial \Phi}{\partial t} \cdot (\overline{r} \times \overline{n}) dS$$

$$\overline{M} = \iint_{S} \rho \frac{\partial \Phi}{\partial t} \cdot (\overline{r} \times \overline{n}) dS$$

$$p = -\rho \frac{\partial \Phi}{\partial t}$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

Potential theory Radiation potential

Solution: radiation potential is written as function of *velocity of the* motion

$$\Phi_{3}(\underline{x},t) = \Re \left\{ \underline{\phi_{3}}(\underline{x}) \cdot \underline{v_{3}}(t) \right\}$$
P7-5 eq. 7.17
Only space dependent
Only time dependent

Suppose we would never the event of the control with:

- the same frequency as the harmonic function with:

- the same frequency as the harmonic motion

- A certain (space dependent) amplitude

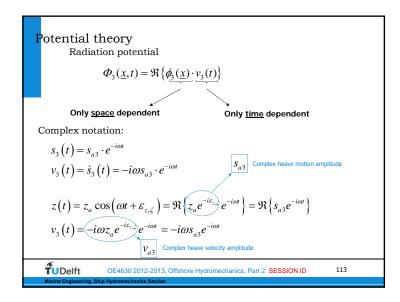
- A certain (space dependent) phase angle

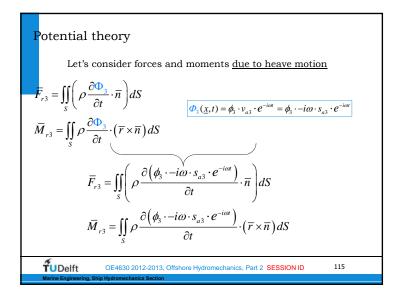
Let's define the amplitude and the phase angle of this potential function to be related to the velocity of the heave motion (\hat{z} or in complex notation: v_3). So we write the potential function ϕ_3 as a complex product of:

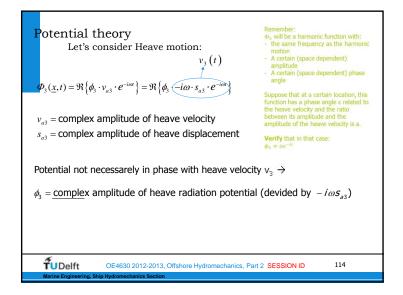
eave velocity) and the heave velocity v_3

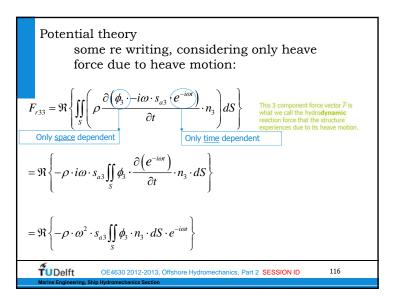
TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID









Potential theory

Radiation Force due to heave motion is 3 component vector:

$$\begin{split} F_{r13} &= \Re \left\{ -\rho \cdot \omega^2 \cdot s_{a3} \iint_S \phi_3 \cdot n_1 \cdot dS \cdot e^{-i\omega t} \right\} \quad & \underline{\textbf{Surge}} \text{ force due to } \underline{\textbf{heave}} \text{ motion} \\ \\ F_{r23} &= \Re \left\{ -\rho \cdot \omega^2 \cdot s_{a3} \iint_S \phi_3 \cdot n_2 \cdot dS \cdot e^{-i\omega t} \right\} \quad & \underline{\textbf{Sway}} \text{ force due to } \underline{\textbf{heave}} \text{ motion} \\ \\ F_{r33} &= \Re \left\{ -\rho \cdot \omega^2 \cdot s_{a3} \iint_S \phi_3 \cdot n_3 \cdot dS \cdot e^{-i\omega t} \right\} \quad & \underline{\textbf{Heave}} \text{ force due to } \underline{\textbf{heave}} \text{ motion} \end{split}$$

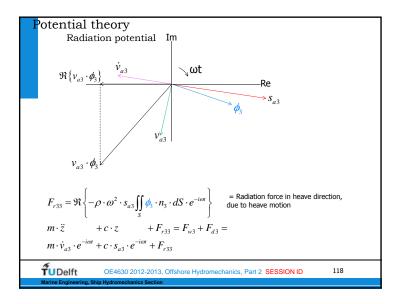
In the following, only <u>heave</u> force due to <u>heave</u> motion is considered: F_{r33}

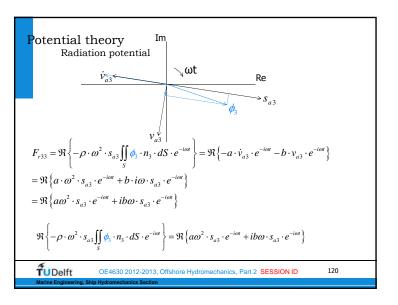
TUDelft

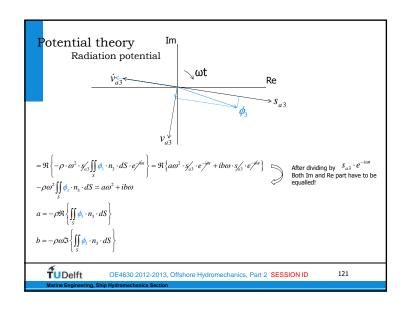
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

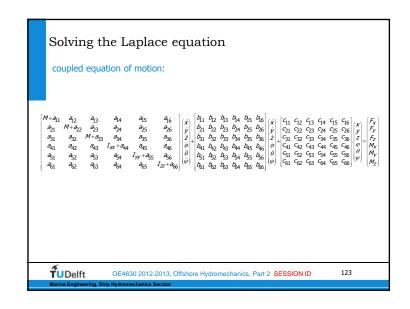
117

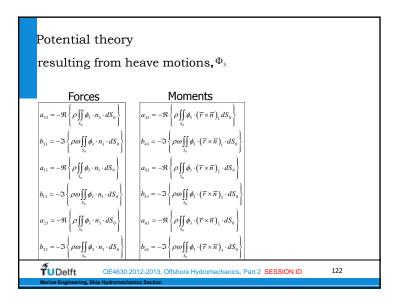
Potential theory Improved Remark Remarks v_{a3} and v_{a3} and v

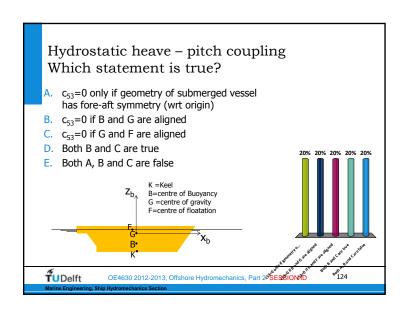




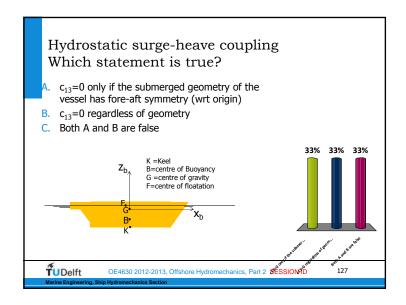


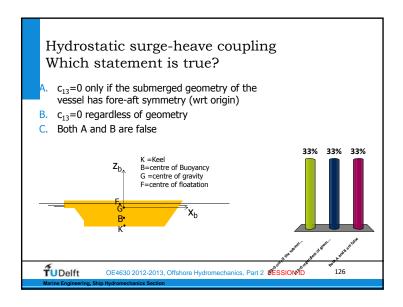


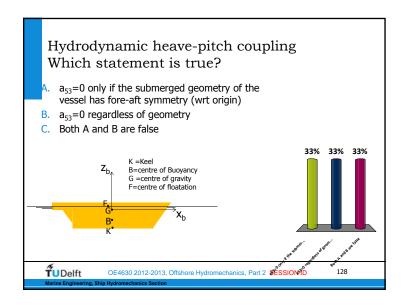


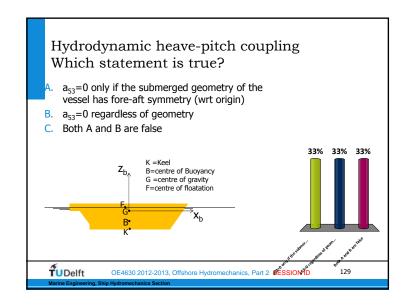


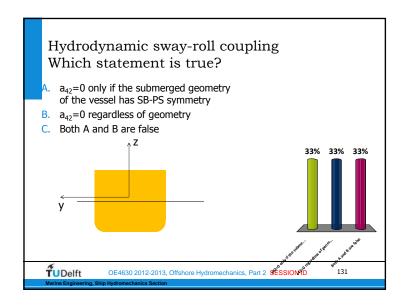
Hydrostatic heave – pitch coupling Which statement is true? A. c₅₃=0 only if geometry of submerged vessel has fore-aft symmetry (wrt origin) B. c₅₃=0 if B and G are aligned C. c₅₃=0 if G and F are aligned D. Both B and C are true E. Both A, B and C are false K = Keel B=centre of Buoyancy G = centre of gravity F=centre of floatation K = Keel B-centre of floatation F = Centre of floatation CE4630 2012-2013, Offshore Hydromechanics, Part 2005 ESEIGNED Marine Engineering, Ship Hydromechanics Section

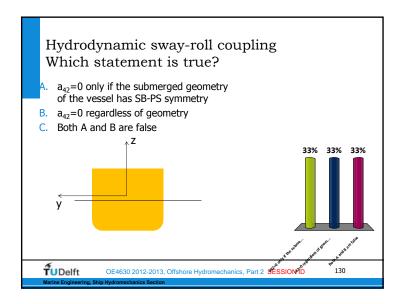


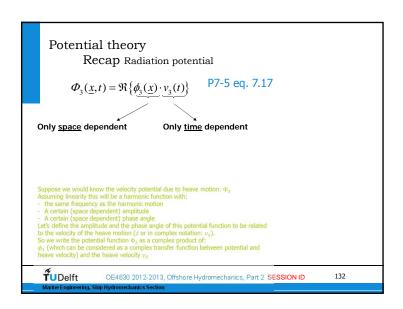


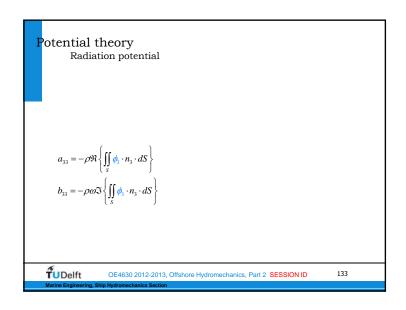


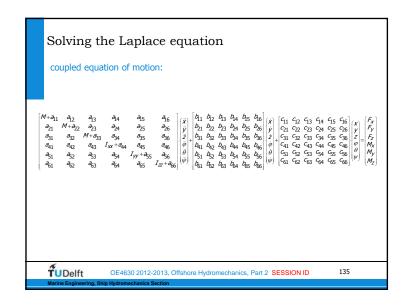


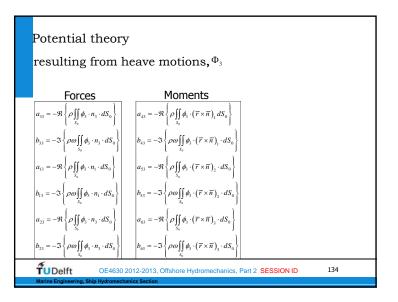


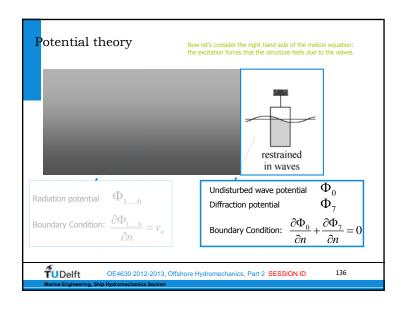












Calculating hydrodynamic coefficient and diffraction force $(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_W = F_{FK} + F_D$ 1. Undisturbed wave force (Froude-Krilov) Potential is known from Ch. 5:

Has to be solved. What is boundary condition at body surface? $\Phi_7 = \frac{1}{2} \text{ Marine Engineering. Ship Hydromechanics Section}$

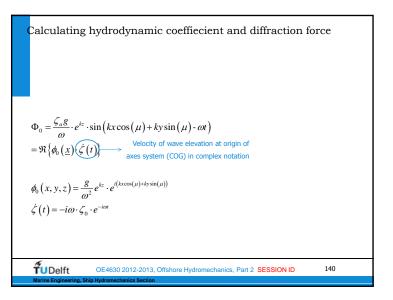
Calculating hydrodynamic coefficient and diffraction force $(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_W = F_{FK} + F_D$ Undisturbed wave force (Froude-Krilov) $\zeta = \zeta_a \cos(kx\cos(\mu) + ky\sin(\mu) - \omega t)$ $\Phi_0 = \frac{\zeta_a g}{\omega} \cdot e^{kz} \cdot \sin(kx\cos(\mu) + ky\sin(\mu) - \omega t)$ $= \Re\left\{-i\frac{\zeta_0 g}{\omega} \cdot e^{kz} \cdot e^{ik(x\cos(\mu) + y\sin(\mu))} \cdot e^{-i\omega t}\right\}$ Analogue to the radiation potential we write the known undisturbed wave potential function as a transfer function σ_0 multiplied with the velocity of the undisturbed wave elevation at the origin of the axes system. $= \Re\left\{-i\omega \cdot \frac{g}{\omega^2} \cdot e^{kz} \cdot e^{ik(x\cos(\mu) + y\sin(\mu))} \cdot \zeta_0 \cdot e^{-i\omega t}\right\}$ $= \Re\left\{\phi_0 \cdot i\omega \cdot \zeta_0 \cdot e^{-i\omega t}\right\}$ Velocity of wave elevation at origin of axes system (COG) in complex notation

Error p.7-39 eq. 7.151!! $\phi_0(x, y, z) = \frac{g}{\omega^2} e^{kz} \cdot e^{i(kx\cos(\mu) + ky\sin(\mu))}$ TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

139

Calculating hydrodynamic coefficient and diffraction force $F_{FK} + F_D$ Linear relation between undisturbed wave and diffraction potential \rightarrow $\Phi_{\gamma} = \phi_{\gamma} \cdot \dot{\zeta} = \phi_{\gamma} \cdot -i\omega \cdot \zeta_{a} \cdot e^{-i\alpha t} = \phi_{\gamma} \cdot -i\omega \cdot \zeta_{0} \cdot e^{-i\alpha t}$ Notation p 7-39, 7-40: $\zeta_{0} = \zeta_{\gamma} = \text{amplitude undisturbed wave (at origin, so real)}$ $\zeta_{1...6} = \text{amplitude motions (complex)}$



Calculating hydrodynamic coefficient and diffraction force

Same for diffraction potential:

$$\Phi_{\gamma} = \Re \left\{ \phi_{\gamma} \left(\underline{x} \right) \cdot \dot{\zeta} \left(t \right) \right\}$$

$$\phi_{\gamma} = ?$$

$$\dot{\zeta} \left(t \right) = -i\omega \cdot \zeta_{0} \cdot e^{-i\omega t}$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

141

Potential Theory Forces and moments can be derived from pressures:

$$\overline{F} = -\iint\limits_{S} \left(p \cdot \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r} \times \overline{n}\right) dS \qquad \qquad \text{Knowing the potentials, pressures} \\ \overline{M} = -\iint\limits_{S} p \cdot \left(\overline{r}$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

143

Calculating hydrodynamic coefficcient and diffraction force

$$(m+a)\cdot\ddot{z}+b\cdot\dot{z}+c\cdot z=F_{W}=F_{FK}+F_{D}$$

Analogue to the radiation potential we write the known undisturbed wave potential function as transfer function σ_0 multiplied with the velocity of the undisturbed wave elevation at the origin of the axes system.

 $\Phi_0 + \Phi_7 = -i\omega \cdot (\phi_0 + \phi_7) \cdot \zeta_0 \cdot e^{-i\omega t}$

We also do this for the unknown diffraction potential whose transfer function we call ϕ_7

Pressure:

$$p_{w} = -\rho \frac{\partial (\Phi_{0} + \Phi_{7})}{\partial t} = \rho \omega^{2} \cdot (\phi_{0} + \phi_{7}) \cdot \zeta_{0} \cdot e^{-i\omega t}$$
= pressure due to incoming and diffracted wave

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

142

Learning goals Module II, behavior of floating bodies in waves Definition of ship motions Ch.6 Motion Response in regular waves: How to solve RAO's from the equation of motion Motion Response in irregular waves: *Aow to determine response in irregular waves from RAO's and wave spectrum without forward speed 3D linear Potential Theory Ch. 7 How to determine Velocity Potential Motion Response in irregular waves: Ch. 8 · How to determine response in irregular waves from RAO's and wave spectrum with forward speed Determine probability of exceedence Make down time analysis using wave spectra, scatter diagram and RAO's Structural aspects: Ch. 8 · Calculate internal forces and bending moments due to waves Ch.6 · Calculate mean horizontal wave force on wall Use of time domain motion equation **TU**Delft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 144

Potential Theory

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

So this is the differential equation we have to solve

What are the boundary conditions?

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

145

Potential Theory

Boundary Conditions:

- At free surface:
 - p = p_{atmospheric} (dynamic bc)
 - Water particles cannot leave free surface (kinematic bc)

• At ship hull: ship is watertight (that's what it's a ship for!)
$$\frac{\partial \Phi}{\partial v} = v_n \quad \text{a}$$

Far far away from the ship: no disturbances due to the ship's presence

 $\lim_{R\to\infty}\Phi=0$

 $\frac{\partial^2 \Phi}{\partial t^2} + g \frac{\partial \Phi}{\partial z} = 0 \text{ at } z = 0$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

147

Potential Theory

Boundary Conditions:

- At sea bottom: Sea bed is watertight
- At free surface:
 - p = p_{atmospheric} (dynamic bc)
 - · Water particles cannot leave free surface (kinematic bc)
- . At ship hull: ship is watertight (that's what it's a ship for isn't it!)
- Far far away from the ship: no disturbances due to the ship's presence

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

14

Solving the Laplace equation

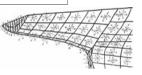
- Q: How to create the potential flows?
- A: Use of basic potential flow elements: source-sheet on the hull

Recall Ch. 3: point source

*

Source: $\phi = \frac{-\sigma}{4\pi r}, v_r = \frac{\sigma}{4\pi r}$

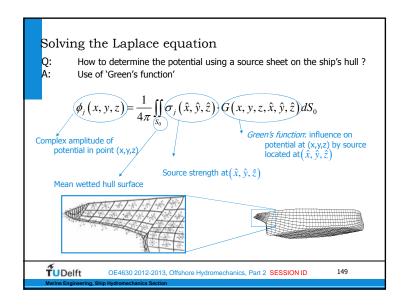
Sink σ is negative



TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

148



Solving the Laplace equation

So:
• Potential field is created by source sheet on ship's hull surface

- The source sheet is a basic potential flow element and a solution of the Laplace equation
- · Potential at certain location is influenced by whole source distribution
- · This influence is defined by the Green's function
- . This Green's function also takes care of satisfying the sea-bed and free surface b.c.
- . The source distribution also satisfies the radiation condition (effect of source vanishes at large distance
- Only b.c. left is that at the hull surface

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

151

Solving the Laplace equation

How to determine the potential using a source sheet on the ship's hull? Use of 'Green's function'

$$\phi_j(x, y, z) = \frac{1}{4\pi} \iint_{S} \sigma_j(\hat{x}, \hat{y}, \hat{z}) \cdot G(x, y, z, \hat{x}, \hat{y}, \hat{z}) dS_0$$

Green's function: influence on potential at (x,y,z) by source at $(\hat{x}, \hat{y}, \hat{z})$

- Satisfies the boundary condition at the free surface
- Satisfies the boundary condition at the sea bed

Relaxed!

P 7-42 formulae for G

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

150

Solving the Laplace equation

Why do we only need to consider the complex amplitude ($\phi(x,y,z)$) instead of $\phi(x,y,z,t)$? Let's consider diffraction potential BC:

$$\begin{split} \frac{\partial \Phi_0}{\partial n} + \frac{\partial \Phi_7}{\partial n} &= 0 \\ \Phi_0 &= \Re \left\{ \phi_0\left(\underline{x}\right) \cdot \dot{\zeta}\left(t\right) \right\} \\ \phi_0\left(x, y, z\right) &= \frac{g}{\omega^2} e^{kz} \cdot e^{i(kx\cos(\mu) + ky\sin(\mu))} \\ \dot{\zeta}\left(t\right) &= -i\omega \cdot \zeta_0 \cdot e^{-i\omega t} \\ \Phi_7 &= \Re \left\{ \phi_7\left(\underline{x}\right) \cdot \dot{\zeta}\left(t\right) \right\} \\ \phi_7 &= ? \end{split}$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

Solving the Laplace equation

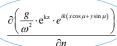
How to make sure the potential satisfies the b.c. at the hull surface ?

$$\phi_j(x, y, z) = \frac{1}{4\pi} \iint_{S_0} \sigma_j(\hat{x}, \hat{y}, \hat{z}) \cdot G(x, y, z, \hat{x}, \hat{y}, \hat{z}) dS_0$$

For example: diffraction potential

 $\frac{\partial \phi_0}{\partial n} + \frac{\partial \phi_0}{\partial n}$

Complex amplitude of normal velocity due to diffraction potential at (x),y,z



 $\partial \left(\frac{1}{4\pi} \iint_{S_0} \sigma_7(\hat{x}, \hat{y}, \hat{z}) \cdot G(x, y, z, \hat{x}, \hat{y}, \hat{z}) dS_0 \right)$

Complex amplitude of Normal velocity due to undisturbed wave potential at (x,y,z)

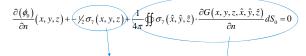
Source strength σ_7 has to be calculated so that this equation is satisfied !!!

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

153

Solving the Laplace equation



Contribution of source at (x,y,z) where r=0

Contribution of all surrounding source sheet (Principle Value Integral)

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

155

Solving the Laplace equation

How to make sure the potential satisfies the b.c. at the hull surface ?

$$\frac{\partial(\phi_0)}{\partial n}(x,y,z) + \frac{\partial\left[\frac{1}{4\pi}\iint_{S_0}\sigma_7(\hat{x},\hat{y},\hat{z})\cdot G(x,y,z,\hat{x},\hat{y},\hat{z})dS_0\right]}{\partial n} = 0$$

$$\frac{\partial \left(\phi_{0}\right)}{\partial n}\left(x,y,z\right) + -\frac{1}{2}\sigma_{7}\left(x,y,z\right) + \frac{1}{4\pi} \bigoplus_{s_{0}} \sigma_{7}\left(\hat{x},\hat{y},\hat{z}\right) \cdot \frac{\partial G\left(x,y,z,\hat{x},\hat{y},\hat{z}\right)}{\partial n} dS_{0} = 0$$

Source strength σ_7 (as a function of the location on the hull) has to be calculated so that this equation is satisfied

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

15

Solving the Laplace equation numerical approach

 $\frac{\partial \left(\phi_{0}\right)}{\partial n}\left(x,y,z\right) + \left(-\frac{1}{2}\sigma_{\gamma}\left(x,y,z\right) + \frac{1}{4\pi} \iint_{S_{0}} \sigma_{\gamma}\left(\hat{x},\hat{y},\hat{z}\right) \cdot \frac{\partial G\left(x,y,z,\hat{x},\hat{y},\hat{z}\right)}{\partial n} dS_{0} = 0\right)$

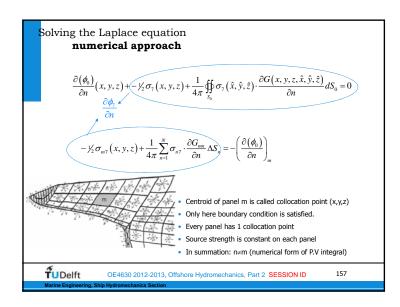
 $\frac{1}{\partial \phi_{7}}$

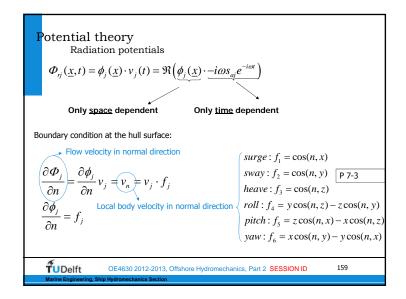
 $\label{eq:problem:pr$

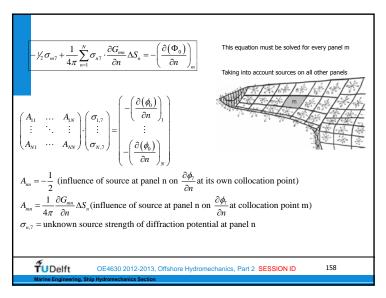
SOLUTION:

TUDelft

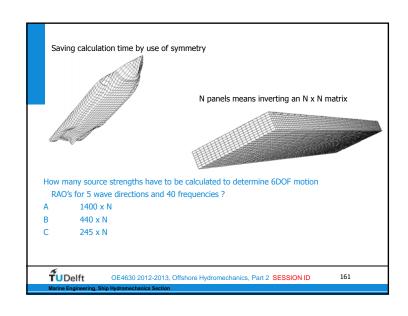
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

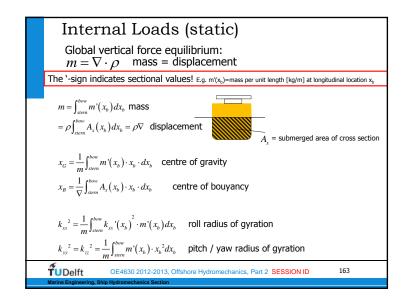












Internal Loads • Static • Dynamic

TUDelft OE4630

Marine Engineering, Ship Hydromee

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

162

Internal Loads (static)

Global vertical force equilibrium:

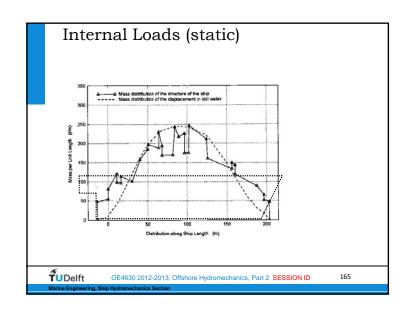
 $m = \nabla \cdot \rho$ mass = displacement

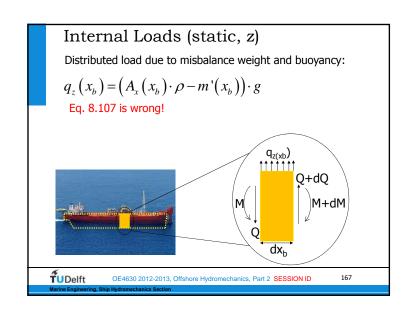
Local vertical force equilibrium (forces on a section of length dx):

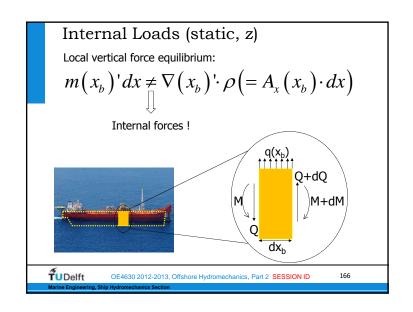
$$m(x_b)'dx \mathbf{P}\nabla(x_b)'\cdot\rho(=A_x(x_b)\cdot dx)$$

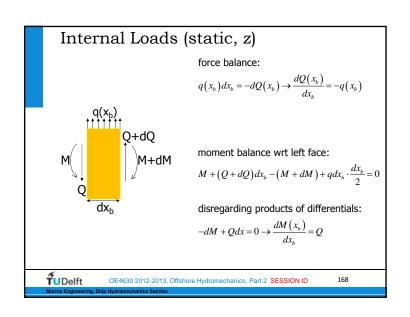
TUDelft

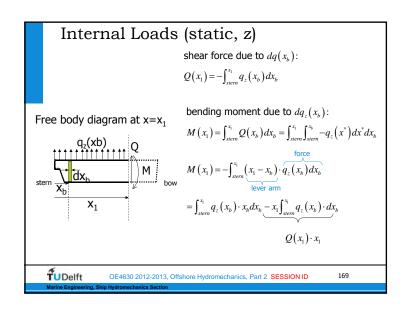
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

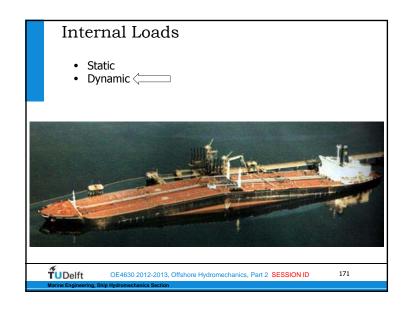


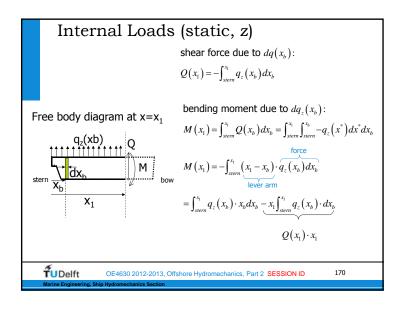


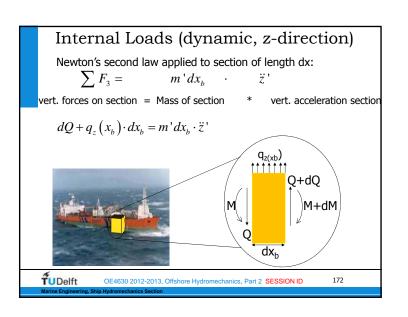






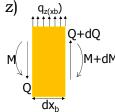






Internal Loads (dynamic, z)

$$dQ + q_z(x_b) \cdot dx_b = m' dx_b \cdot \ddot{z}'$$



Distributed load:

$$q_z(x_b) = (A_x(x_b) \cdot \rho - m'(x_b)) \cdot g + ?$$

$$\begin{aligned} q_z\left(x_b\right) &= \left(A_x\left(x_b\right) \cdot \rho - m'\left(x_b\right)\right) \cdot g * F_{waves}' + F_{hydromechanic reaction}' \\ q_z\left(x_b\right) &= \left(A_x\left(x_b\right) \cdot \rho - m'\left(x_b\right)\right) \cdot g + F_{w3}' + F_{h3}' \end{aligned}$$

This includes the static part. For a dynamic analysis this part is omitted:

$$q_z(x_b) = (A_x(x_b) \cdot p - m(x_b)) \cdot g + F_{w3}' + F_{h3}'$$

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

173

Internal Loads (dynamic, z)

reaction force (added mass, damping, restoring):

$$F'_{b3} dx_b = F'_{b3} + F'_{b3} = \sum_{j=1}^{6} a^3_{aj} \cdot \ddot{x}_j + \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j + \sum_{j=1}^{6} c^*_{aj} \cdot \ddot{x}_j = \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j + \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j = \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j + \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j = \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j + \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j = \sum_{j=1}^{6} b^*_{aj} \cdot \dot{x}_j + \sum_{j=1}^{6} b^*_{aj} \cdot \dot{$$

How to obtain sectional hydromechanic coefficients a', b', c'?

TUDelft

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

175

Internal Loads (dynamic, z)

distributed dynamic load = reaction +excitation:

$$q_z(x_b) = F'_{h3} dx_b + F'_{w3} dx_b$$

- reaction force (added mass, damping, restoring)
- excitation force (due to waves)

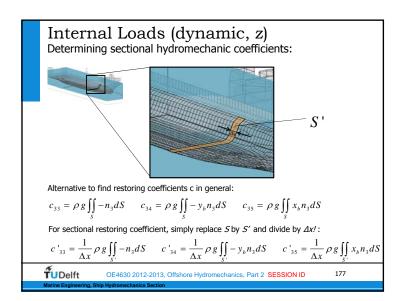
TUDelft

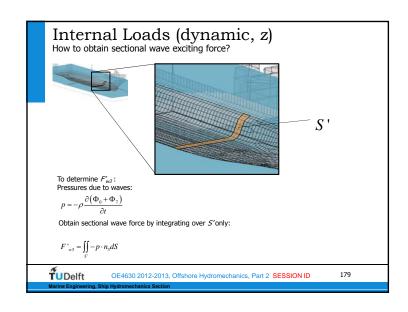
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

174

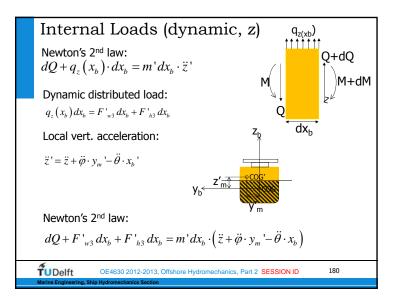
Internal Loads (dynamic, z)
How to obtain sectional hydromechanic coefficients a', b', c'?

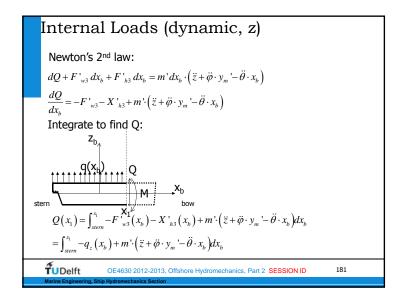
To determine a' and b' coefficients:
Pressures due to motions: $p_j = -\rho \frac{\partial \Phi_j}{\partial t}$ Resulting radiation force in heave direction due to all possible motions found by integration over sectional submerged hull area, S', only: $F'_{r,3} = \frac{1}{\Delta x} \sum_{j=1}^6 \iint_{x'} P_j \cdot n_3 dS = \sum_{j=1}^6 -a'_{3j} \cdot \ddot{x}_j + \sum_{j=1}^6 -b'_{3j} \cdot \dot{x}_j$

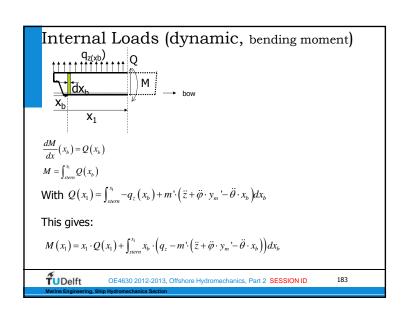


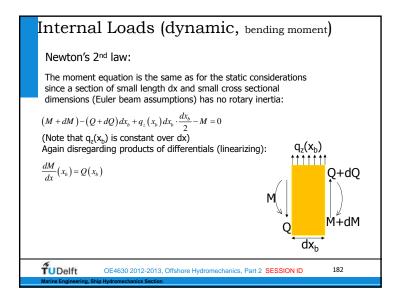


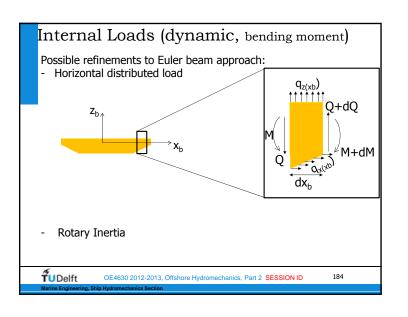
Internal Loads (dynamic, z) distributed dynamic load = reaction +excitation: $q_z(x_b) = F'_{b3} dx_b + F'_{w3} dx_b$ • reaction force (added mass, damping, restoring): • excitation force (due to waves)



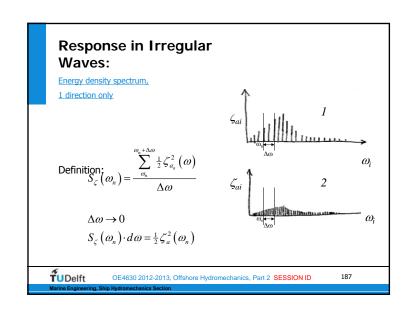


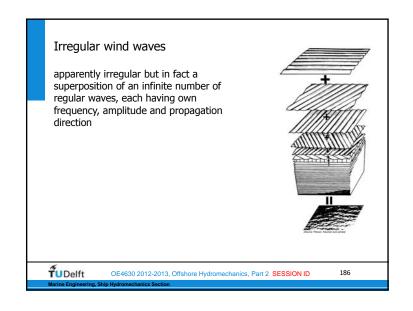


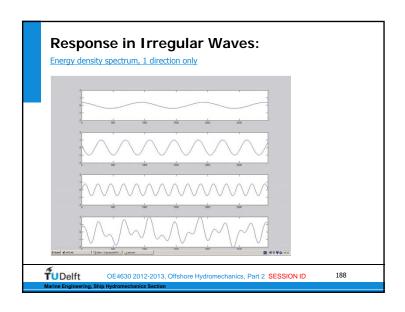


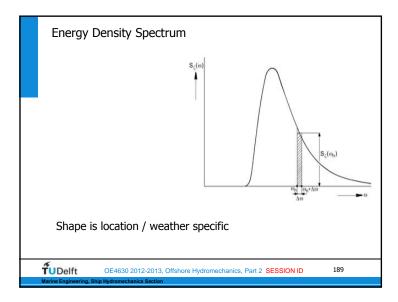


Response in Irregular Waves Full of the Community of the









Measured spectra appeared to have a sharper peak than the PM spectrum. This is why the PM spectrum was adopted by means of a peak enhancement function.

 $S_{\zeta}(\omega) = \frac{320 \cdot H_{\frac{1}{3}}^{2}}{T_{p}^{4}} \cdot \omega^{-5} \cdot e^{\frac{-1950}{T_{p}^{4}} \omega^{-4}} \cdot \gamma^{A}$

 γ^A = peak enhancement function $\gamma = 3.3$ = peak enhancement factor

$$A = e^{-\left(\frac{\frac{\omega}{\omega_p}-1}{\sigma\sqrt{2}}\right)^2}$$

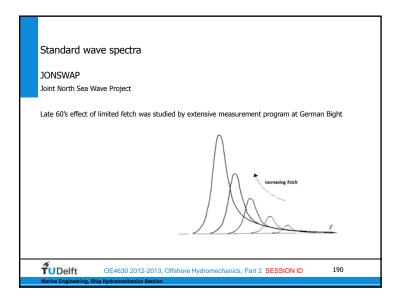
 σ = step function of ω :

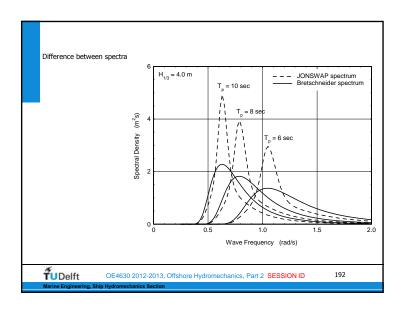
 $for \omega < \omega_p \quad \sigma = 0.07$

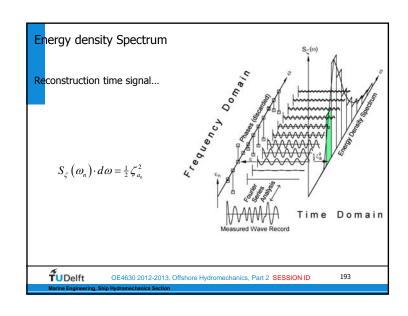
for $\omega > \omega_p$ $\sigma = 0.09$

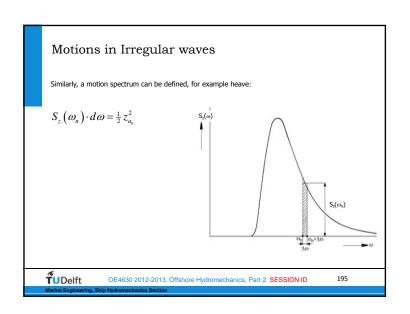
TUDelft

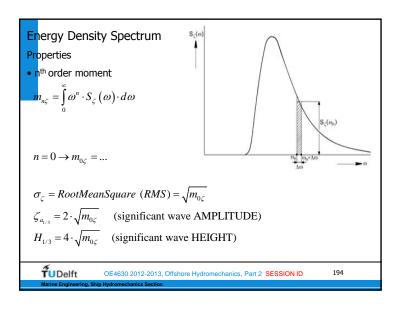
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

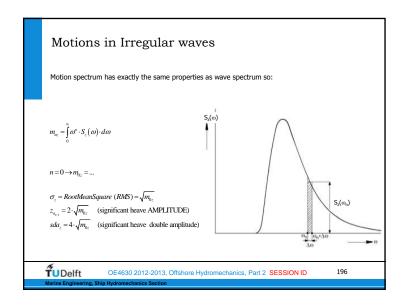


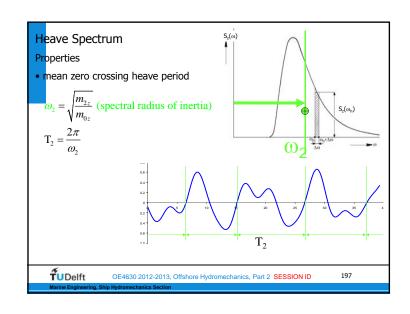


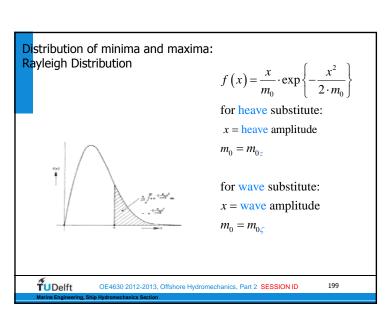


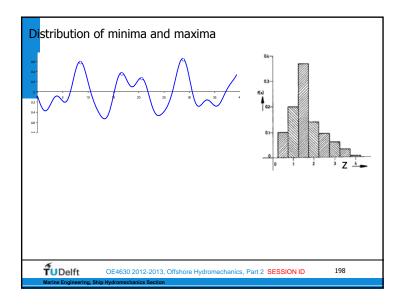


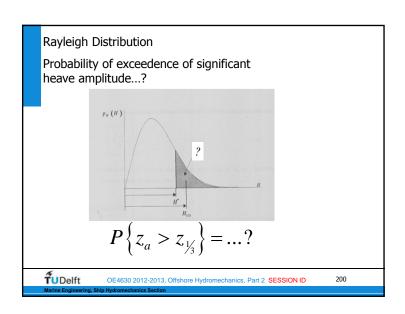


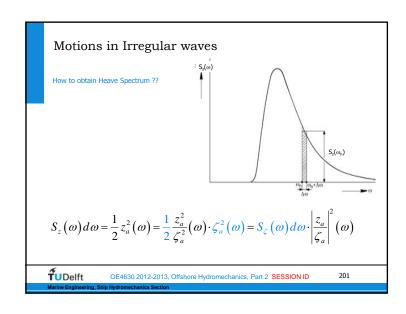


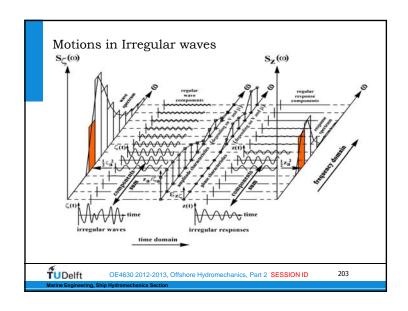


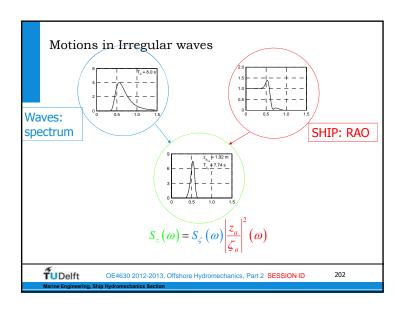


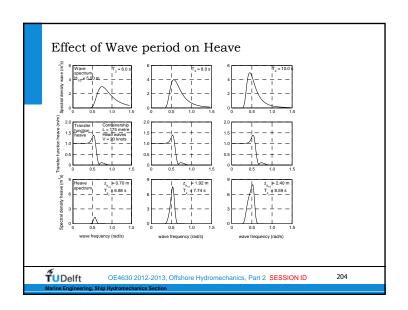


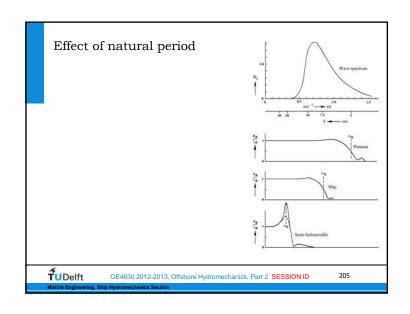


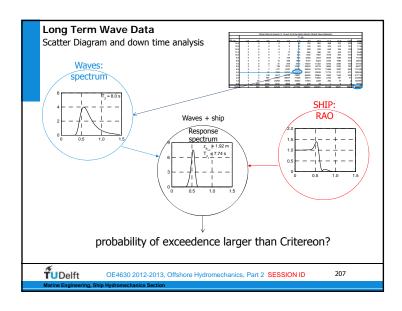


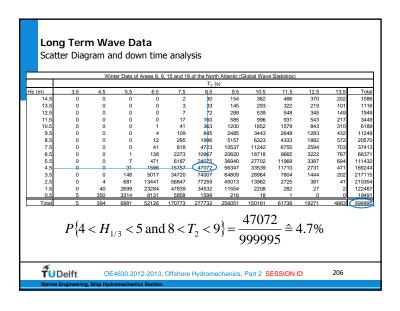












Sources images

- [1] Towage of SSDR Transocean Amirante, source: Transocean
- [2] Tower Mooring, source: unknown
- [3] Rogue waves, source: unknown
- [4] Bluewater Rig No. 1, source: Friede & Goldman, LTD/GNU General Public License
- [5] Source: unknown
- [6] Rig Neptune, source: Seafarer Media
- [7] Pieter Schelte vessel, source: Excalibur
- [8] FPSO design basis, source: Statoil
- [9] Floating wind turbines, source: Principle Power Inc.
- [10] Ocean Thermal Energy Conversion (OTEC), source: Institute of Ocean Energy/Saga University
- [11] ABB generator, source: ABB
- [12] A Pelamis installed at the Agucadoura Wave Park off Portugal, source: S.Portland/Wikipedia
- [13] Schematic of Curlew Field, United Kingdom, source: offshore-technology.com
- [14] Ocean Quest Brave Sea, source: Zamakona Yards
- [15] Medusa, A Floating SPAR Production Platform, source: Murphy USA

