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The story so far...

» Theory and models to explain traffic flow operations, specifically
queuing phenomena, using:
* Queuing Theory
» Shockwave theory
* Kinematic Wave theory

» Kinematic Wave theory uses:
» Conservation of vehicle equation
« Assumption that traffic behaves according to fundamental diagram

%+3—z=r—s and g = Q(k)
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Example

e Consider an over-saturated on-
ramp with on-ramp flow r y
» Over-saturation starts at t1 caprctl]

e Which additional assumption do K RS
we need to predict what will r |
happen using KWT? !
» What will happen according to l‘
KWT? I.e. which traffic state \
occurs upstream of on-ramp '1:'1 £

» Is this what will happen in reality?

d .
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Are these findings in line with KWT?

* What do we know about the movement of (small) disturbances in
the flow?

* What does KWT predict:
 In terms of their speed?
 In terms of their amplitude?

e What about traffic data?

4 .
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Occurrence of moving jams

Growing amplitude of perturbations... A(t)= A, -e° (1=t9)

A5 South, May 7, 2001 V (km/h)
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Observations

* In certain high density regions, traffic is unstable
» Small disturbances grow quickly and become wide moving jams

» Phase transition from a
congested state to a
wide moving jam

» Other phase transitions
observed in reality?

1,!U Delft Traffic Flow Phenomena 7| 49




[solated moving jams

* Free flow to wide-moving jams (isolated moving jams)

A5 South, June 086, 2001
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Triggered standing queues
ey A5 South, June 6, 2001 V[km/h]
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How can you explain this ‘triggered’ congestion?
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Some empirical features

Perturbation speeds for different regimes...

Propagation velocity ¢ (km/h)
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Quantifying stability

Figure shows growth rate ¢ for different regimes...
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*“Why use a trapezoid?

What about the states?

 Transient (intermediate) states are generally not on the FD

« Consider traffic state dynamics of area indicated by trapezoid™

* When driving into congestion, points are ‘above FD’, when driving
out of congestion, points are ‘below FD’ (= hysteresis)
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Intermezzo

Understanding hysteresis

e Original study of Treiterer
and Myers (1974) showed a
quite different results ol

o In this study, a rectangular [ |
grid to determine the traffic
states from the trajectories
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Intermezzo

Methodology: Analyze Trajectories

e Classic Method: track platoon Result:
(Treiterer and Myers, 1974) strong hYStEI’ESIS
SEREAEERRE, =
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Intermezzo

Methodology: Analyze Trajectories

e Classic Method: track
conditions in the platoon at
different time instants

Result:
strong hysteresis

Problem:
* averaging over different
traffic states ®
(like loop detectors)

How can we improve this?
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Intermezzo

Methodology: Analyze Trajectories

e New Method: follow waves + Edie

n A
o = z fz/lrll /’:%O/
i=1 K
n
qg=>_ x:/|A|, 3 é/
n n ,,,{/,,‘
'U:q/kZZt.,;/ZI,ﬁ, ,,,,,//
=1 =1 ,,,¢ 4
area A dependent on trajectories S
=» Averaging over stationary traffic lne
state © .
&
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In sum...

» We observe various unstable (or ‘meta-stable’) traffic states in
« critical (free-flow) conditions and in
» congested (synchronized) flow (standing queues, queues due to MB)
 Perturbations (small / considerable) trigger a so-called phase-
transition (critical flow to wide-moving jams or congested flow
to wide-moving jams)
» Moving jams can trigger (standing) queues due to capacity drop
» Hysteresis phenomena (transient states not on the FD)

 For today, two main questions:
« Can we explain these phenomena?
* Can we model these phenomena?

<
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Hysteresis

Simple mathematical model...




Mathematical preliminaries
Taylor series expansion

» Model derivation approach based on simple ‘microscopic’ model
» Use of Taylor series expansion and chain rule

* Taylor series:

f(x+0)= f(X)+5 f(X)+ L5 2f(x)+

f(x+6)=f<x)+6£f(x)+0(52)

» For multi-dimensional functions, we have:

f(x+0,,y+0,)= f(x)+5xaif(x,y)+5yif(x,y)
X Jy
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Quasi-microscopic model I

» Basic driving rule: drivers adapt their speed u based on the local
spacing s = 1/k, as reflected by the function U

u(lt,x)=U(/s(t,x))=U(k(t,x))

* How can we improve this model?

» Assume that drivers ‘anticipate’ on downstream conditions with a
certain anticipation distance:
u(t,x)=U(k(t,x+A))

» Consider resulting model derivation...

<
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Quasi-microscopic model I

» Resulting model:

ok d
u(t,x)=U(k(t,x))+A- a : %U(k(t,x))

e Interpretation?

» What happens when a driver moves into a congestion region?
» Which (transient) states would you observe in the phase plane?

» Model describes so-called anticipation dominated driving
behavior

<
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Quasi microscopic model II

» Assumption: drivers have a delayed reaction to changing driving
conditions:

u(t+7,x(t+71))=U(k(t,x))

» Apply Taylors rule to derive:
8_u+u8u _Uk)—u
ot 0x T

 Interpretation?

» What happens when a driver moves into a congestion region?

» Which (transient) states would you observe in the phase plane?
» Model describes reaction dominated driving behavior

<
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Combining the models...

» Combining models I (anticipation) and II (reaction) yields:

u(t+7,x(@+17)=Uk(t,x+A))

» What happens when a driver moves into a congestion region?
What happens when a driver moves out of a congested region?
» Which (transient) states would you observe in the phase plane?
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Payne model

» Note that for the combined model, we can derive the PDE

Ju Ju ok Uk)—-u . A dU
—tu— = h =————>0
5 +u 5 +c(k) . . with c(k) T >

o Interpretation of the terms?
» Together with the conservation of vehicle equation

ok N d(ku)
o  Ox

we get the so-called Payne model (Payne,1979)

0

<
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Kerner’s Theory

Three phase theory




Spontaneous phase transitions

» Consider conditions
upstream of active
bottleneck =

* KWT does not predict
phase transitions

» Theory of Kerner
qualitatively
describes phase
transitions in
unstable and meta-
stable traffic flow
operations

%
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Traffic theory of Kerner

» Three phase (state) theory of traffic flow:

* Free flow (the F line)

» Synchronized flow
(density > critical density, A <ynchronized
but less than jam density); S flow
(shaded area) Qout -

* Wide moving jams
(density = jam density)

Qi —>-

flow rate. g

|
(the J-line) (a) ) . -
: max ma
Pein! | | density, p
4 “
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Traffic theory of Kerner

A5=North, 26.06.1996
3000 1 D20-left 30007

» Synchronized flow

. =" D19-left
» Occurs at bottlenecks = | e = | Fad
(comparable z | £ e =
1000 1 1000 +
to regular queues)
» Head of the queue R o w0 w
. . p [veh/km] p [veh/km]
is generally stat_lonary i+ DISleh 100 - o DI7-eft
» Congested traffic state = z I
- Multiple stationary states £ i - - 0
S 1000 - 1000 A
in congested branch,
which is an area rather M
p [veh/km] p [veh/km]
than a line
o Little lane changing, speed of lanes are nearly equal
] .
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Traffic theory of Kerner
AS5-North, March 23, 2001
20| “— Borth
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Traffic theory of Kerner

» Dynamic properties of ‘wide moving jam’
» Density in wide moving jam equals the jam density, vehicles inside
the queue are standing still
» Density upstream equals critical density pmin
* Head of queue is moving at a constant speed
* Wide moving jam can move through other disturbances
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Traffic theory of Kerner
AS5-North, March 23, 2001
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Traffic theory of Kerner

* ‘Spontaneous’ transitions from one state to another, also referred
to as self-organisation

» Stable traffic conditions
« Disturbances will not yield a phase transition
» Metastability:

* Small disturbances are damped out, large disturbances cause a phase
transition

e Instability:
* Any disturbance causes a phase transition
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(free) | synchronized
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~~
2D
~—

pmax
» Figure (b) shows critical densities density, p
causing transition from free flow to _ 3
synchronized flow or to jammed i: b .
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» Figure (c) shows corresponding 2z "
transition probabilities (determined ®) density:p
empirically from data on motorway = 5
traffic fluctuations s
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3 |
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Instability

...macroscopic and microscopic
explanations and (simple)
models...




Occurrence of moving jams

Growing amplitude of perturbations... A(t)= A, -e° (1=t9)

A5 South, May 7, 2001 V (km/h)
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Instability and wide moving jams
Emergence and dynamics of start-stop waves

e In certain density regimes, traffic is highly unstable
» So called ‘wide moving jams’ (start-stop waves) self-organize
frequently (1-3 minutes) in these high density regions

- -

= Traffic Jam without Bottleneck &

-t

Expenimental evidence 2
for the physical mechanism of forming a jam

_
\ ~ - ! ~
oYUkt Sugiyama. Minoru Fukw, Macoto Kikuchi,

Katsuya Hasebe, Akihiro Nakavama Kalsuhiro Nishman
Shin-ichi Tadaki and Satoshi Yukawa

Movie 1

%
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Payne model and instability

» Payne’s model (1979) was the first second-order model

ok N d(ku) _

0
of  Jdx
ou Jdu Uk)—u 1 dU ok
—tu—= +
a0 ox 7 2kt dk ox
=AE;<,u)

where A=1/2k

* A = A(k,u) describes the acceleration along trajectories governed
by relaxation to equilibrium speed and anticipation
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Payne and Instability

Linear stability analysis

» Consider an equilibrium solution (ke,ue) of the Payne model

» Note that A = 0 in case of equilibrium

 In a linear stability analysis, we consider small perturbations on
this solution, i.e.:

k=k,+0k and u=u,+ou

» Derive dynamic equations for the perturbations (6k,0u)
and determine if these will either damp out or become larger

over time
 For the Payne model, we can derive conditions for stability:
U’'(k
2kT
(; .
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Example: Greenshields

k

e For Greenshields: U(k)=u, [1 — k_] = U'(k)=-u,/k,,

jam

e Substitution yields:

u. k.
k-(u. |k ) <2
(tty / Kjon) 2kT

—

k < kjam

27Tu,

 In other words, traffic instability occurs for sufficiently high
densities
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Example Payne model

» Example predicted flow conditions in case of initially

homogeneous state

z (km)
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Instabilities in microscopic models...
A more or less generic car-following model...

» Considered class of car following models describe acceleration as a
function of distance, speed, rel. speed

d
a = f(sl,,Avl,,vi) where Av, = ES’ =V _ -V

» Example: Intelligent Driver Model (IDM):

aeol1l ¥ 6_ S.(v,Av) 2
- v, s—1

where s, =s +S v + 1TV VAV
*— % 1"l -
vV, 2+/ab

<
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Car-following stability analysis

» Local stability (studied

from the fifties) describes .
how a follower reacts on
perturbation of leader ol
» Example shows local 5w
instability of leader- 8 |
follower pair ;»3
g 10
» Does this make any z |
sense for a realistic
m Od e I ? 00 110 210 310 410 510 60
e How to analyze? time (s)
'i"U Delft Traffic Flow Phenomena 43 | 49




Analyzing local stability

* Assuming a leader-follower pair in equilibrium
» Consider disturbance by follower (leader does not react):

s(t)=s,+y(t) and v(t)=v, +u(t)

» What are the dynamics of the disturbance?
e Linearized system:

—1
aly =A- y where A= 0
dt u u fs fv_fAv

« Eig(A), solution of A* +(f —f)A+f =0
determines stab.
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Analyzing local stability

* We get the following solutions:

~(f_ —f)+ \/(fAV —f ) —4f
D

1 =

1,2

» Necessary conditions for stability: Re(A) < 0
* When would we have Re(A) > 0, small disturbances grown over time
(and actually become infinitely large)

* No oscillations in the solution Im(A) = 0
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Linear stability analysis

e Criteria for linear stability?
e For the simple car-following model: a = f(s,v,Av)
we find:
f>0 = f <f

» Are these reasonable assumptions?

» No oscillations in response of follower?

1
f < Z(fv — fAv)2

» Does local instability entail realistic driving behavior?

<
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More sensible definitions of stability

» String stability and instability

i ——» time

"KICK"

4

- - -

Cc+ C-

3
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Stability tests for your model...

» For local stability, we need to test for solutions of eigenvalue
problem: W2+ (f, —f)A+f =0

» Sign of real-part of the roots tells you if there is local stability or
not (Re(A) < 0)

 For string stability, we need to test the following:

fs fv2
Z'Z:f_s E_fAva_fs

e Is string stability realistic?

<
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Exercise

g

e Consider the IDM:

S.(v,Av)
s—1

|

where s. =S +S v + 1TV vAv
) ml. o
v, 2\ ab

e Can you determine the fundamental diagram? Which conditions
will occur in case of equilibrium?

» Can you derive conditions for local stability?

» Can you derive conditions for string stability?

<
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Types of string instability

e Three kinds...
(@) (b) (c)

rh Uk A Uk A (o Cy

/ - | LB
: -V /

1,!U Delft Traffic Flow Phenomena 50 | 49




Capacity drop

...micro and macro explanations...




Capacity drop on motorways

* How can we identify the capacity drop?
» Cumulative curves and slanted cumulative curves
» Size and relevance of the phenomenon
* How large is the capacity drop?
* Why is it important and what are possible mitigating actions

» What are possible explanations?
 Slow vehicles with bounded accelerations changing lanes
 Slow reaction on downstream conditions
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. * Capacity = slope of line (+ ref
CapaCIty dI'Op value of 3700 vtg/h)

Two capacities ,
* Free flow capacity = 4200 vtg/h

* Free flow cap > queue-dis e« (Q-discharge rate = 3750 vtg/h
» Use of (slanted cumulative

clearly reveals this * Capacity drop =11%
® Pd<[t,)() —_ -ﬁt\/EEf1i(:|EEES [)EifSSSif\f « UlLIun L
* Slope = flow [ ] ~

q, = 3700
~3800 —— : : : — -

-3900 ¢

—4000 ¢

~4100}

N(t,x)

-4200

tiid (u)

N'(t,x)= N(t,x)—q, -t

7.5 8 8.5 9 9.5

<
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Capacity drop

Possible causes: overtaking & moving bottleneck

» Overtaking by slow moving vehicles

» Moving bottlenecks with empty spaces in front
x0=0 «1=017 - %2=0.33 #3=05
. P . km P . Lane
______________________________________________________________________________________ 1
__________________________________________________________ 2
3
Density, vehs per km per lane
[ ] Disruptive Lane Change [ Jvoid r Loop-detector ! z —
0 93.2
Oblique N-curves at loop-detectors  Cum. LCs ups. of the bottleneck flows-density at =1 flow-density at x2
151 43 5400 5400
161 281 3600 3600
-183 1 141 1800 18001
<0G 3 i & U0 3 i & Y0 o aw e "o 1m0 30 a0
time, min time, min density, vpkpl density, vpkpl
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Capacity drop

Possible causes: differences in acceleration

» Vehicles (person-cars, trucks) have different acceleration
characteristics

» Consider vehicles flowing out of wide-moving jam

» What will these differences result in?

» Slower accelerating vehicles result in platooning effects, with slow
moving vehicles are platoon leaders that leave a void in front that
will not be filled

<
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Capacity drop

Possible causes: retarded reaction (hysteresis)

* “hysteresis is manifested as a generally different behavior
displayed by (a platoon of) drivers after emerging from a
disturbance as compared to the behavior of the same vehicles
approaching the disturbance”

» Explanation by (in-) balance between anticipation and delayed

reaction shows different hysteresis curves
2y q
it 25006
7 2000} Ge (strong)
7 1so0f
1000¢
500¢

7 k
e 7 0 50 100 150 (veblks
"/’5”?////4/ ,%/ ,/_/7_%/;; 0 80 161 240 (veh/m
time
<]
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Think about modeling
Suitability of modeling paradigms...

» Which models do you know that can describe / deal with the
capacity drops

» Which of the modeling paradigms are (in principle) suitable to
describe the capacity drop?
* First-order theory and shockwave theory
* Queuing models
» Other continuum traffic flow models (Payne)
 Microscopic traffic simulation models

<
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Summary

Phenomena and models...




Today’s lecture

» Discuss higher-order phenomena in traffic flow:
 Capacity drop
* Hysteresis
« Traffic instability
» Discuss underlying explanations
» Show possible modeling approaches:
» Higher-order models
 Microscopic models

» In coming lectures, microscopic (car-following) models are
discussed in more detail

]
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Models and phenomena

™

—
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Capacity drop -0 0 + - + 0 0 +
Emergence of s&g - &4+ 4+ L+ . - . -+
Propagation of s&g + + + + 0 0 0 0 0
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