
Analyzing irrigation

CT4410

December 14, 2011

Clemmens

The performance of large-scale irrigation projects worldwide has been disappointing to the international community. Continued poor performance could limit our ability to provide food and fibre for a growing, more affluent world population. Improvement in the productivity of large irrigation systems is a key component to assuring future adequate food and fibre supplies. This paper discusses the reasons for poor performance of these schemes and proposes a method to improve their performance. A main problem is that operation of these irrigation systems is not tied to productivity. As a result, the dispersive nature of these large open canal distribution systems causes extreme variability in water delivery service to users. The remedy is to break the system down at key intermediate locations within the network and to improve physical and administrative control at those locations.

Molden et al

Effective irrigation service provides the environment for productive and sustainable agriculture vital for incomes and employment, economic growth and lifting people out of, and keeping them out of, poverty. Poorly managed irrigation can have the opposite effect. Irrigation performance assessment is an important management tool to aid in providing sound service. Performance assessment in irrigation and drainage is the systematic observation, documentation and interpretation of activities related to irrigated agriculture with the objective of continuous improvement.

Type of person	Possible first criterion of good system performance	
Landless labourer	Increased labour demand, days of working and wages	
Farmer	Delivery of an adequate, convenient, predictable and timely water supply	
Livestock keeper	Readily accessible water for livestock	
Fisherman	Maintaining the quantity and quality of water for aquaculture and capture fisheries	
Irrigation manager	Efficient delivery of water from headworks to the tertiary outlet	
Agricultural economist	High and stable farm production and incomes	
Economist	High internal rate of return	
Politician	Who receives benefits	
Broader society	High water productivity, and best allocation of water resources	

Typical concepts applied

Delivery Performance Ratio =
$$\frac{\text{Actual Flow of Water}}{\text{Intended Flow of Water}}$$

Depleted Fraction =
$$\frac{ET_{a}}{P_{e} + Q_{in}}$$

Water Productivity
$$(ET) = \frac{Yield \text{ or value of Harvested Crop}}{ET_{actual}}$$

and

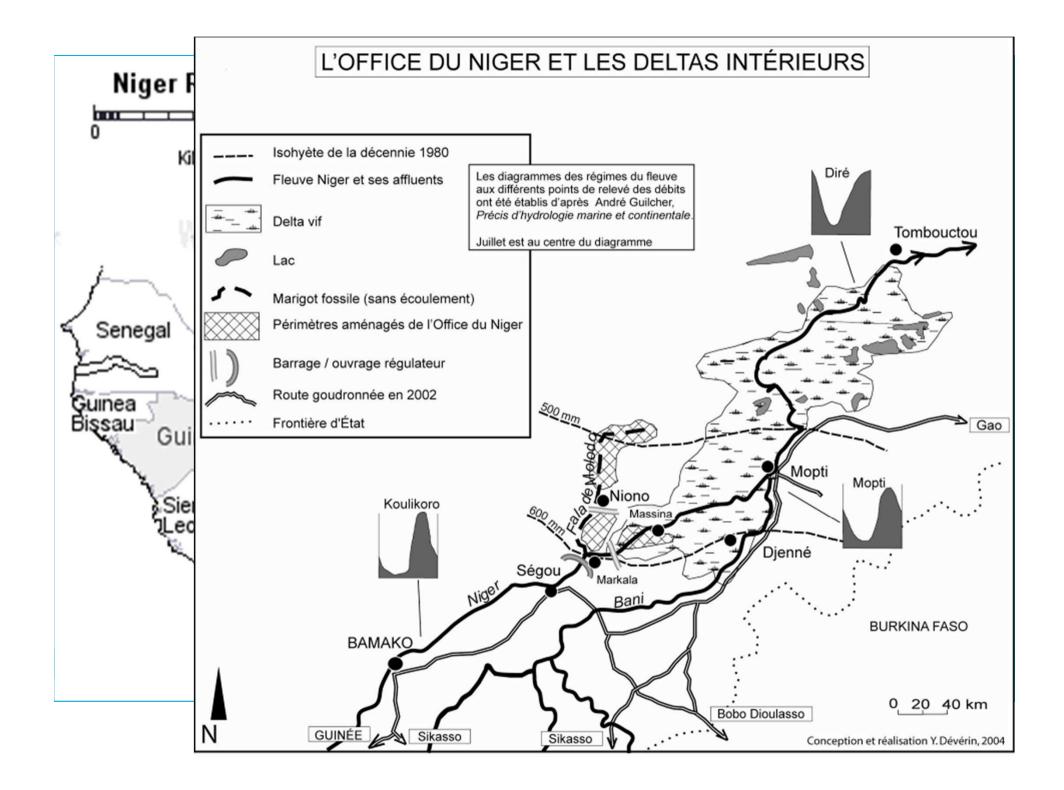
Water Productivity
$$(m^3) = \frac{Yield \text{ or value of Harvested Crop}}{Volume of Supplied Irrigation Water}$$

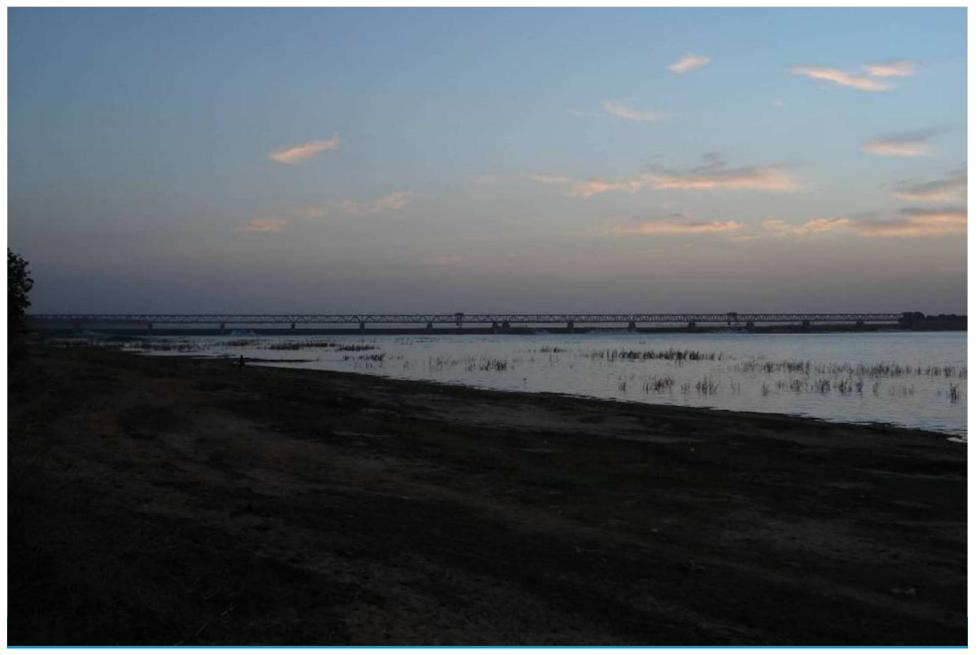
Descriptor	Possible options	Explanatory notes	Example
Irrigable area	_	Defines whether the scheme	8567 ha
Annual irrigated area	Area supplied from surface water	is large, medium or small scale Shows the intensity of land use and balance between surface or groundwater irrigation	7267 ha
	Area supplied from groundwater	groundwater migation	4253 ha surface
Climate	Arid; semi-arid; humid tropics;	Sets the climatic context. Influences the types of	3014 ha groundwater Mediterranean
Average annual rainfall (P)	Mediterranean —	crops that can be grown Associated with climate, sets the climatic context and need for irrigation	440 mm
Average annual reference crop evapotranspiration (ET _o)		and/or drainage Associated with climate, sets the climatic context and need for irrigation	780 mm
Water source	Storage on river; groundwater; run-of-the river; conjunctive use of surface and groundwater	Describes the availability and reliability of irrigation water supply	Over-year storage reservoir in upper reaches. Groundwater aquifers
Method of water abstraction	Pumped; gravity; artesian	Influences the pattern of supply and cost of irrigation water	Gravity fed from rivers, pumped from
Water delivery infrastructure	Open channel; pipelines; lined; unlined	Influences the potential level of performance	groundwater Open channel, lined primary and secondary canals
Type of water distribution	Demand; arranged on-demand; arranged: supply orientated	Influences the potential level of performance	Arranged on-demand

Key descriptors for irrigation and drainage schemes

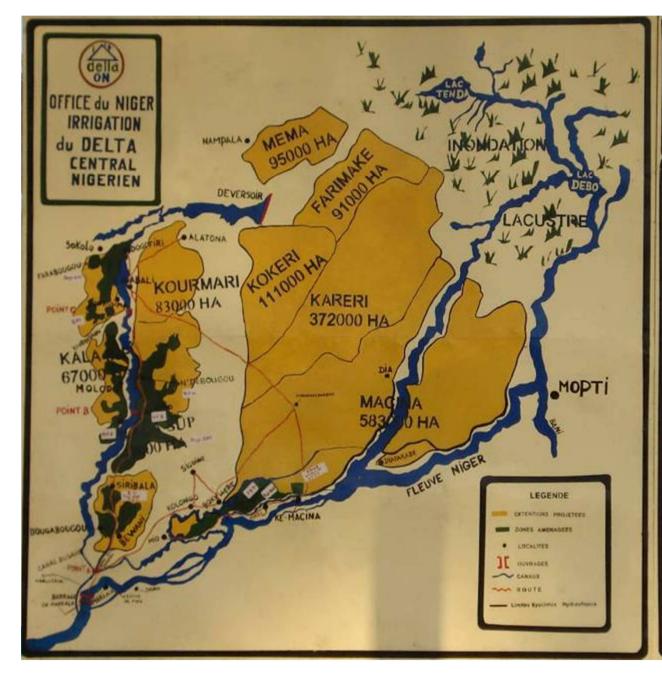
Descriptor	Possible options	Explanatory notes	Example
Predominant on-farm irrigation practice	Surface: furrow, level basin, border, flood, ridge-in-basin Overhead: rain-gun, lateral move, centre pivot; drip/trickle Sub-surface: drip	Influences the potential level of performance	Predominantly furrow, with some sprinkler and (increasingly) drip
Major crops (with percentages of total irrigated area)		Sets the agricultural context. Separates out rice and non-rice schemes, monoculture from mixed cropping schemes	Cotton (53%)
			Grapes (27%) Maize (17%) Other crops (3%)
Average farm size	_	Important for comparison between schemes, whether they are large estates or smallholder schemes	0.5–5 ha (20%)
			>5–20ha (40%) >20–50ha (20%) >50ha (20%)
Type of management	Government agency; private company; joint government agency/farmer; farmer-managed	Influences the potential level of performance	River system: government
	rai nici-manageu		Primary and secondary systems: water users' associations

Office du Niger


December 14, 2011

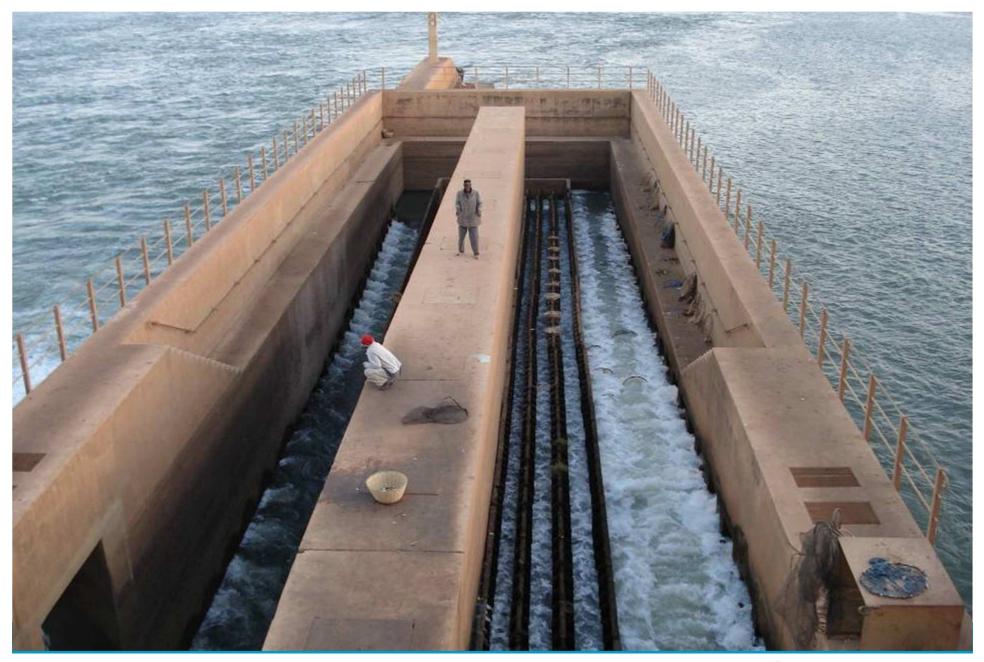

Water Resources Management

Technische Universiteit Delft



bref historique de l'Office du Niger

- 1932 Création de l'Office du Niger
- 1934 à 1947 Construction du Barrage de Markala, Long de 816 m Avec 488 Vannes
- 1961 (19 mai): Nationalisation de l'Office du Niger
- 1962 : Introduction de la canne à sucre :
- 1970: Abandon de la culture du coton ;
- 1978 : Table ronde des bailleurs de fonds en vue du redressement de l'Office du Niger;
- 1994 : Restructuration de l'Office du Niger avec l'appui des partenaires au développement ;


Let's take a look

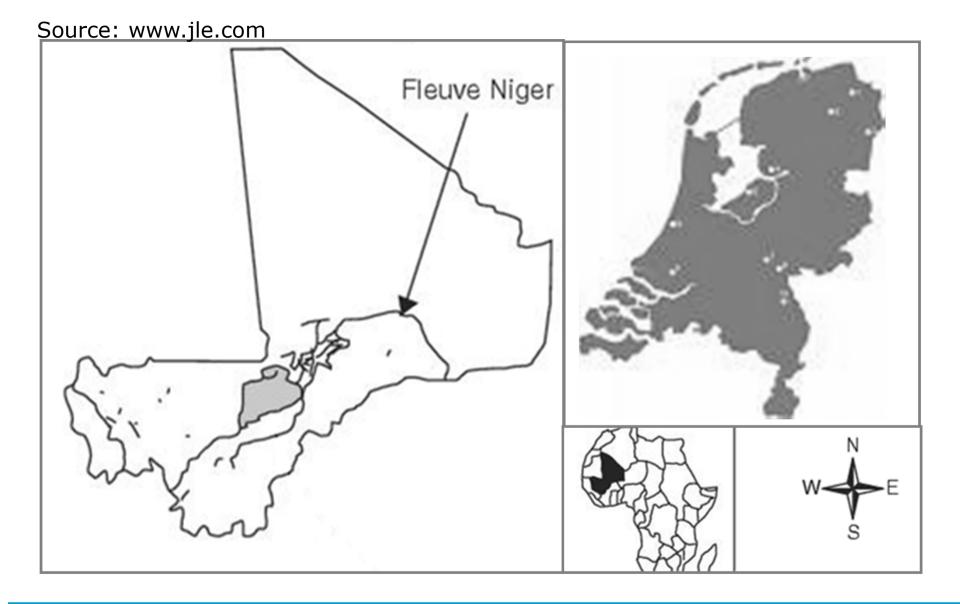
http://www.satellite-sightseer.com/id/9428

Primary channel into Office du Niger

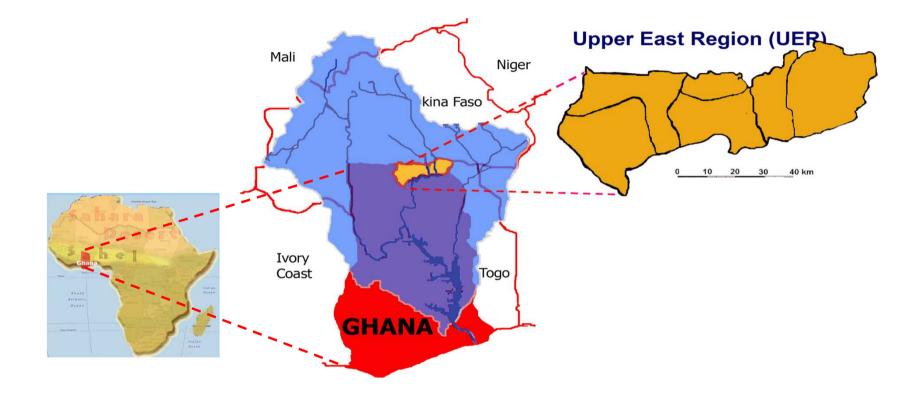
Type of infrastructure Retail type

Arpon type

Not rehabilitated

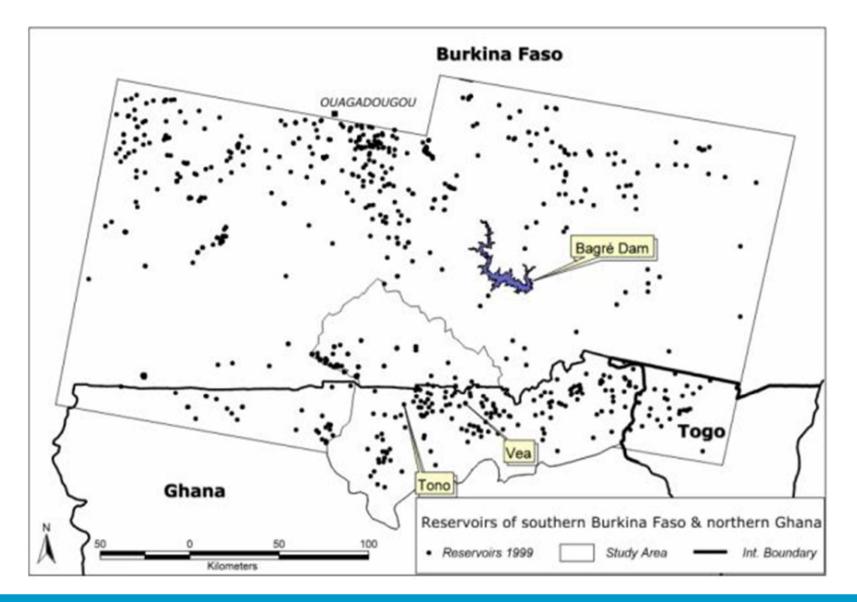


Surface area in numbers


- The Netherlands: 4 200 '10³ ha
 Total area OduN: 2 000 '10³ ha
- Potential irrigation:
- Present irrigation:

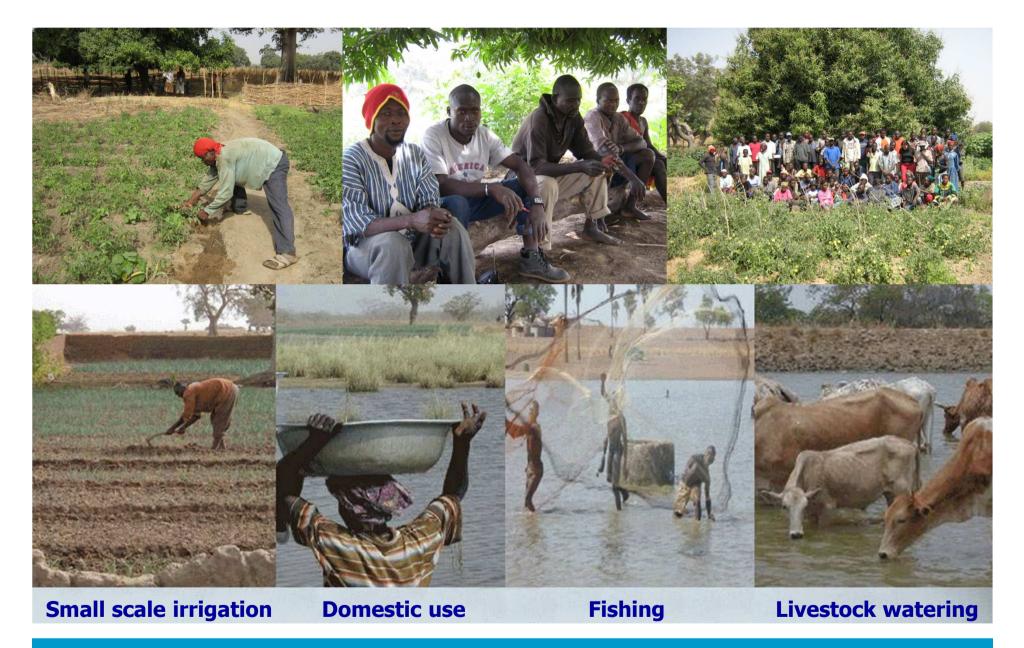
- 2 000 [•]10³ ha 960 [•]10³ ha
 - 93 [•]10³ ha

Irrigation in Ghana


Maurits Ertsen December 14, 2011

TUDelft

34


Water Resources Management

Technische Universiteit Delft

Tanga System Layout

43

Weega System Layout

Irrigated Areas

	Area under Cultivation (ha)	Total Water Released for	Water Released per Area Irrigated	
		Season (m ³)	(m ³ /ha)	
Tanga Canal A	0.8629	34121	39542	
Tanga Canal B	0.7591	19245	25352	
Weega Canal A	2.8824	32373	11231	
Weega Canal B	3.1245	35895	11488	
Tanga Total	1.6220	53366	32901	
Weega Total	6.0069	68268	11365	

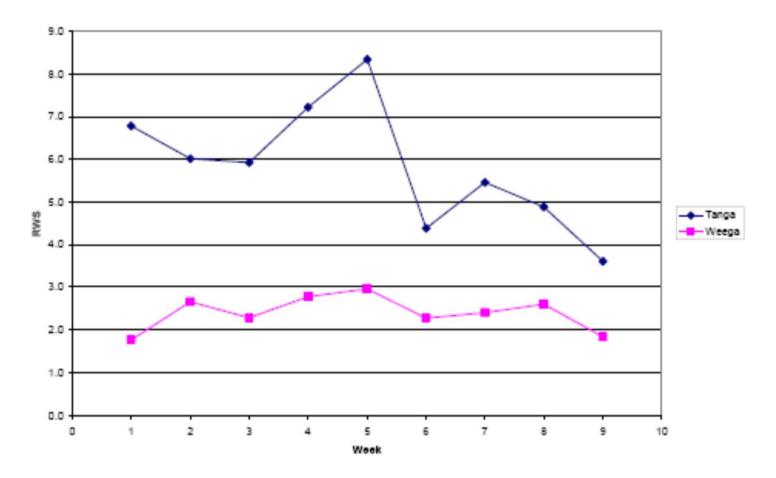
	Rate, mm/day								
Week	1	2	3	4	5	6	7	8	9
Tanga	6.0	5.4	6.4	8.3	7.5	7.4	7.6	7.7	7.6
Weega	7.7	5.7	8.0	8.6	8.1	8.0	8.6	7.8	7.7

Measured evaporation

Calculated Evapotranspiration Rates

	Rate, mm/day								
Week	1	2	3	4	5	6	7	8	9
Tanga	3.9	3.7	4.2	4.8	4.5	5.4	5.1	5.3	5.8
Weega	5.0	3.8	5.2	5.0	4.9	5.9	5.8	5.4	5.9

Total Supply, Demand, and Average RWS for Sample Period


Reservoir	Supply (cm)	Demand (cm)	RWS		
Tanga	171.3	30.0	5.7		
Weega	79.4	32.9	2.4		

Supply and Demand for Nine Weeks (cm)

Week	1	2	3	4	5	6	7	8	9
Demand									
Tanga	2.7	2.6	2.9	3.4	3.2	3.8	3.6	3.7	4.1
Weega	3.5	2.7	3.7	3.5	3.4	4.1	4.1	3.8	4.1
Supply									
Tanga	18.5	15.4	17.4	24.4	26.5	16.5	19.7	18.2	14.7
Weega	6.2	7.1	8.4	9.8	10.1	9.4	9.8	9.8	7.6

RWS for Nine Weeks Starting Jan. 15 and Ending Mar. 18

