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Intro Hopper 
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Unloading TSHD 
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Application of TSHD  

Before 1980  

• Maintenance Dredging  

• Deepening of harbours & entrance Channels 

• Maintenance due to siltation 

• Soft sediments (silt clay) 

• Not stationary (wires anchors), so less problems 
with shipping 



15 January 2013 10 

Application of TSHD 

• Capital Dredging (new projects) 

• Most Reclamation works 

• Less suitable: 

• Reclamation in combination with deepening 

• Short distance between dredging & 
reclamation. 

• Dredged material suitable for fill 

• Sediments in dredge area difficult for TSHD 
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Doha Airport 

Quatar 

(in progress) 
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TSHD Process Discription 
 

Sailing loaded 

sediment 
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TSHD Process Discription 
 

Discharge 
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TSHD Process Discription 
 

Sailing empty 

water 
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TSHD Process Discription 
 
Suction 

Excavation 
Vertical transport 
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TSHD Process Discription 
 

Loading 

Hopper sedimentation 

Loading (overflow) 
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HOPPERLOAD (m3) 
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unloading 
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Loading 
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Proces 

Overflow 
phase 
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Loading & Overflow system 

water
Sand

Delivery pipeline
Distribution
  valvesDiffusor
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Overflow system 
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Loading & Overflow system 

• Loading system 

• Distribution of sediment  

• Influence on overflow losses 

• Influence on hopper load 

• Influence on trim of the hopper 

• Overflow system 

• Adjustable in height 
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Overflow Losses 

•Important to know: 

• Quantity of losses 

• Which part of the particle size distribution is lost 

•Why: 

• Production 

• Sand Quality 

• Environment  
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Factors influencing overflow losses 

• ? 
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Factors influencing overflow losses 

• Sediment characteristics 

• Particle size distribution   }  Settling  

• Shape factor                   }  velocity 

• Equipment 

• Hopper dimensions (L,H,B) 

• Loading and overflow system 

• Operational 

• Discharge 

• Concentration 

• Loading time 

• Loading procedure 

• Water temperature Most important ? 
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Factors influencing overflow losses 

• Sediment characteristics 

• Particle size distribution   }  Settling  

• Shape factor                   }  velocity 

• Equipment 

• Hopper dimensions (L,H,B) 

• Loading and overflow system 

• Operational 

• Discharge 

• Concentration 

• Loading time 

• Loading procedure 

• Water temperature 
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General Properties 

Volume particles  

Volume water 

Total Volume 

Volumetric Concentration  

 

t s wV V V 

wV

sV

s
v

t

V
C

V


 

 1

s s t s wt s s w w
m

t t t

m v s v w

V V VM V V

V V V

C C

  


  

 
   

   Mixture density 



15 January 2013 29 

Discharge 
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Definition Overflow losses 
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Flow Pattern 
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Settling velocity 

• Derive a general equation for the settling (fall) velocity 
of a particle below the water surface 
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Settling Velocity 
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Drag Coefficient CD 
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Cd as a function of Rep 
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Small particles :  Stokes equation 
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Coarse particles :  Turbulent regime 
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Intermediate Regime 

•Iteration of Cd 

 

•Or use empirical equations 
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Particle Reynolds number 
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Settling velocity  influence temp 
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Hopper sedimentation 

• Section 2 
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Influence of the concentration 

Return flow 
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Hindered settling 

•Not one particle is settling: 

•Mutual influence 

•Return flow 

•Particle – particle interaction 

•This effect is called hindered settling 

•Settling velocity of single grain is reduced with a 
factor f 
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Hindered settling function 
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Hindered settling exponent 

 

•Rowe: 
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Influence concentration on settling 
velocity 
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• Settling velocity decreases with concentration 

 

• And therefore loading velocity decreases also ???? 

 

• NO 

 

• Settling flux = product of concentration and settling 
velocity is important 
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Settling flux = ws * c 
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Sedimentation velocity 

Is vertical velocity of the settled bed 
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sw
Top of settled bed 
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•Volume of sediment moving 
along moving interface = 

•Volume of sediment stored in 
bed 
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Schematic Process Overview 
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Sedimentation Velocity 

•Vertical velocity of interface between settled sand and mixture 
above 

•So far only sedimentation without flow near the bed  

•In general: 

 

 

 

 

•S :  Sedimentation Flux  E :  Erosion Flux 
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• Overflow loss correlates good with S* 

 

• Relation cannot be applied in general 

• Based on lab tests (influence erosion?) 

• Influence PSD 
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Modelling the settling in a hopper 

• Camp based models 

• 2DV model 
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Camp based models 

• ‘Ideal’ settling basin 

• Originates from clarifiers  

• First published by Camp (1946) 

 

• Extended and applied for dredging by Vlasblom & 
Miedema 
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Ideal settling basin 
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Influence Particle Size Distribution  
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Influence of turbulence 

•The particle trajectories in the previous slides were 
straigth lines. Only possible in laminar flow 

•Reynolds number with u=0.1 m/s H=10 m: 

 

 

 

 

-> Turbulent flow ! 
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Including turbulence  

•Continuity equation: Advection – diffusion equation 

•Control volume  

•Rate of change of sediment inside volume = equal to 
the fluxes through the boundaries 

•Fluxes through the boundaries are resultion from: 

•Advection : particles are carried with the flow 

•Diffusion: mixing through the effect of turbulent eddies 
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Only horizontal Advection: 
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Only horizontal diffusion: 
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Horizontal advection + diffusion :  
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Approximations 

General equation: 

Horizontal diffusion is small compared with horizontal 
advection   

Vertical velocity is equal to ws and not a function of c 

Stationary flow 

Horizontal particle velocity = flow velocity and uniform 
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Influence horizontal flow velocity 

•Advection (transport from inlet to outlet zone) 

•Turbulence: “stirring up” of sediment 

•Hindered sedimentation due to bed shear stress 

•Often called erosion or scour 

•Review general sedimentation equation: 

 

 

 

•E is sediment pick-up 
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How to determine sediment pick-up ? 

• Needed: 

• Velocity distribution in the hopper and especially 
near the bed 

• Often assumed as uniform or logarithmic 

• Relation between E, shear stress, particle size and 
concentration 

• Problem: Conditions in a hopper very different from 
normal encountered in nature (high concentration) 
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Uniform or logarithmic profile 
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Camp Approach 

For a certain critical flow velocity a particle with a diameter D  
Will not settle anymore in the bed due to bed shear stress  
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Influence Particle Size Distribution  
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From a Dcr calculate a critical settling velocity ws,cr 

Particles with a smaller settling velocity will not settle: 

Therefore the lower boundary for 
The integral is ps  
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• In practice this method does not have large influence 
on results due to 

• Assumption uniform flow 

• Therefore Flow velocity < ucr 

• No influence apart from the very last loading stage 
(almost totally filled hopper) 
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Ideal settling basin 
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Coupling between concentration and velocity distribution 
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Modelhopper Top view 
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Modelhopper + EMS 
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Discharge pipe 
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Actual Flow Pattern 

Due to difference in density flow is concentrated near 
the bed. Flow velocity is higher compared with uniform 
distribution 
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Measured flow velocity in hopper 
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Bed level 
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actual 
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Conclusion Camp model 

• Shortcomings Camp approach: 

• Flowfield prescribed 

• In reality density currents 

• Influence bed shear stress on sedimentation 

• Inflow and outflow zone not modeled 

• Variation in location not possible 

• But gives a good estimate for overflow loss for optimal 
loading situation 
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2 DV model 

•In Camp model (with Turbulence) the sediment transport equations 
were solved using a prescribed velocity field 

• Separate equations have to be solved to determine the flow field: 

•2DV Reynolds Averaged Navier-Stokes  

• mixture model (no multi-phase flow) 

•Hydrodynamic (non-hydrostatic) 

•Coupling momentum - sediment transport equations 

• Buoyancy (density currents) 

•k-eps turbulence modelling 
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2 DV model (continued) 

•Moving bed  

• Erosion - Sedimentation boundary condition 

•Moving Water surface 

• filling of hopper, variation overflow level 

•influence PSD by n fractions mutually coupled 

•Loading and Discharge location 

• variation of position and quantity (in time) 

• Inlet conditions (velocity, turbulence intensity)  
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Reynolds Averaging: 
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•Reynolds stresses are assumed to be analog to viscous stresses, for 
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Overview 2DV Model 

2D RANS 

Cons.Volume + Momentum  Sediment Transport 

Turbulence Model 
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Computed hor. Velocity in hopper 

Mariza
Typewritten Text
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Computed Concentration in the hopper 
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Modelling the hopper sedimentation 
process 

• Very simple ‘model’: 

 

• If ssed is the mass settling in the bed and sin  the mass 
of sediment loaded in the hopper one could expect 
that : 

 

• OV=f(sin / ssed) 
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•Inflow mass: 

 

•Settling flux: 

•BL = width * Length of hopper 

 

•With : 

 

 

•ratio  

 

in s ins Qc
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•In case E=0 (no erosion)  

 

 

 

 

 

 

•S* is a product of a function f(c) and the dimensionless 
overflow rate  H* 

 

 

* *0
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ws 

V0=Q/(B*L) 

0*
s s

v Q
H

w BLw
 

Ratio between vertical 
velocity and settling velocity: 
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Cum OV versus H* en S*  (Lab tests) 
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example 

•Hopper  (HAM 318 old): 

•L= 79.2  B = 22.5 

•Q= 14 m3/s 

 

 

•PSD   
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L= 79.2 m
B= 22.5 m
Q= 14 m

v0 7.856341 mm/s

fraction p D w0 w0/v0 r_g r_r
mm/s [-]

[-] [mm]
1 0.1 0.01 0.06 0.007 0.007217 0.000722
2 0.1 0.052 1.53 0.195 0.195065 0.019507
3 0.1 0.11 6.86 0.873 0.872645 0.087265
4 0.1 0.174 14.09 1.794 1 0.1
5 0.1 0.275 29.69 3.779 1 0.1
6 0.1 0.398 50.26 6.398 1 0.1
7 0.1 0.631 87.33 11.116 1 0.1
8 0.1 0.912 126.07 16.047 1 0.1
9 0.1 1.585 199.40 25.380 1 0.1

10 0.1 3.311 329.71 41.967 1 0.1

total: 0.807493

Ov_cum= 19%

Example Camp no turbulence and no hindered settling 
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L= 79.2 m
B= 22.5 m
Q= 14 m
c_in 0.17 [-]
v0 7.856341 mm/s

fraction p D ws ws/v0 r_g r_r
mm/s [-]

[-] [mm]
1 0.1 0.01 0.02 0.003 0.003004 0.0003
2 0.1 0.052 0.65 0.082 0.082367 0.008237
3 0.1 0.11 3.03 0.385 0.385345 0.038534
4 0.1 0.174 6.65 0.847 0.847048 0.084705
5 0.1 0.275 15.29 1.946 1 0.1
6 0.1 0.398 27.58 3.510 1 0.1
7 0.1 0.631 50.84 6.471 1 0.1
8 0.1 0.912 75.84 9.653 1 0.1
9 0.1 1.585 124.25 15.815 1 0.1

10 0.1 3.311 210.61 26.807 1 0.1

total: 0.731776

Ov_cum= 27%

Camp no turbulence , including hindered settling 
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Calculation of PSD in hopper 

1 2 3 4 5

=4*1 =5/Sum

p p_cum D r_g r_r frac in hopp frac in hopp
cumulative

0.1 0.1 0.01 0.003 0.000 0.000 0.000
0.1 0.2 0.052 0.082 0.008 0.011 0.012
0.1 0.3 0.11 0.385 0.039 0.053 0.064
0.1 0.4 0.174 0.847 0.085 0.116 0.180
0.1 0.5 0.275 1.000 0.100 0.137 0.317
0.1 0.6 0.398 1.000 0.100 0.137 0.453
0.1 0.7 0.631 1.000 0.100 0.137 0.590
0.1 0.8 0.912 1.000 0.100 0.137 0.727
0.1 0.9 1.585 1.000 0.100 0.137 0.863
0.1 1 3.311 1.000 0.100 0.137 1.000

Sum: 0.731776
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PSD’s 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

D [mm]

p
 [

-]

PSD in
PSD settled
PSD in overflow



15 January 2013 106 

Optimal loading time 
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HOPPERLOAD (m3) 

 

TIME  
 
 

sailing 

unloading 

sailing 

Loading 

Cycle time 

m3 unloaded 

Overflow phase 
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Cycle production 

3
3 /cycle

m unloaded
P m s

cycle time
   

Ham 318

hopper load 20,000 m3

Sailing empty 300 min
Loading 70 min
Sailing loaded 330 min
Unloading 15 min
turning etc. 10 min

Total 725 min

Cycle. Prod 27.59 m3/min
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HOPPERLOAD (m3) 

 

TIME IN MINUTES 
 
 

 
3

3tan /cycle

m unloaded
P m s

cycle time
     

Cycle time 

m3 unloaded 



Optim. load 
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Long sailing distance 

Short sailing distance 
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Questions? 

 



Sources images

1. Trailing Suction Hopper Dredger, source: unknown.
2. Rotterdam, source: Van Oord.
3. HAM 318, source: Van Oord.
4. HAM 311, source: Van Oord.
5. Maasvlakte 2, source: Royal Haskoning.
6. The World, Dubai. Source: unknown.
7. Federation Island, Sochi, Russia. Source: Russkie Prostori.




