Traffic Flow Theory and Simulation

V.L. Knoop

Lecture 9
Car-following: The Basics
Car-following – the basics

24-3-2014
Recap Lagrangian coordinates

- Do not fix coordinates along the road, i.e. $k=k(x,t)$ & $q=q(x,t)$

- Instead, describe the position of vehicles (platoon of d_n): $x=x(n,t)$
Recap of Macroscopic Fundamental Diagram

- Consider ring road slide 5
- Suppose
 - an outflow governed by a MFD (fig b)
 - instantaneous density changes
 - an inflow curve A (see picture)

- Construct the cumulative curves, and calculate the delay
- How can this be improved with inflow reduction (and by how much)
- (See fig for answer, Daganzo2005)
Levels of description

- Area (MFD)
- Road (flows, density => e.g., shockwave theory)
- Individual vehicles – now

- Two tasks: lateral and longitudinal
Levels of the driving task

• Michon, 1985
• Strategic
 • E.g., route choice

• Tactical
 • E.g., overtaking

• Operational
 • Car operations (i.e., steering, operating throttle)
Introduction to the cf subtask

The structure of the driving task (cont’d)

Summary

<table>
<thead>
<tr>
<th>Roadway subtask</th>
<th>Vehicle interaction subtasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>Speed choices (free speed)</td>
</tr>
<tr>
<td>Lateral</td>
<td>Lane choice</td>
</tr>
</tbody>
</table>

How do drivers accelerate to their desired speed?

How do drivers interact with other (generally slower) vehicles?
Introduction to the cf subtask

Relevance of this vehicle interaction subtask

• Correct simulation tools (e.g. Fosim);
• Predictions for unknown roads
• Driver assistance systems, e.g. Adaptive Cruise Control (ACC):
 • What feels most natural?
 • What impact does it have
Car-following model

- Description of acceleration (or speed, or position?) of vehicle i as function of leader(s) parameters.
- $a_i=\ldots$ or $v_i=\ldots$ or $x_i=\ldots$
- 5 minutes: build your own car-following model
Newell simple car-following model

1. Translate the trajectory in time
2. Translate the trajectory in space

=> \(X_{i+1}(t+\tau) = x_i(t) - x_0 \)
Newell simple car-following model

1. Translate the trajectory in time
2. Translate the trajectory in space

\[X_{i+1}(t+\tau) = x_i(t) - x_0 \]
Newell simple car-following model

1. Translate the trajectory in time
2. Translate the trajectory in space

\[X_{i+1}(t+\tau) = x_i(t) - x_0 \]
Relation microscopic-macroscopic

1. Translate the trajectory in time
2. Translate the trajectory in space

\[K_j = \frac{1}{x_0} \]
Finding the right value for \(w \)
Another way to find shockwave speed
Average behaviour

- Shock wave speeds average
- 12 vehicles or more: no more heterogeneity
- Good approximation for choice of platoon in lagrangian coordinates
Fundamental diagram

• Newell’s car-following model is equivalent with Daganzo’s fundamental diagram (in congestion = car-following mode)

Why?
Bando model

• \(a = a_0^* (v^* - v) \)
• \(v^* = 16.8 \tan h(0.086(\Delta x - 25) + 0.913) \)

• Relaxation towards an optimal velocity \(v^* \)

• How would you derive the Fundamental Diagram?
IDM model

\[
\dot{v}_\alpha = \frac{dv_\alpha}{dt} = a \left(1 - \left(\frac{v_\alpha}{v_0} \right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha} \right)^2 \right)
\]

with \(s^*(v_\alpha, \Delta v_\alpha) = s_0 + v_\alpha T + \frac{v_\alpha \Delta v_\alpha}{2 \sqrt{a b}} \)
Fundamental Diagrams
Learning goals

• Now you can:
 • Comment on use of microscopic simulation
 • Switch views (microscopic and macroscopic) for a model
STABILITY
Local stability
(1 follower instable)

Platoon/asymptotic stability

Traffic flow stability /

Traffic flow instability
Stability analysis

- Example model:

- \[A(t+\tau) = \kappa(v_{i-1}-v_i) \]

- With increasing kappa, stability:
 - A: increases
 - B: decreases
 - C: is the same
Non oscillatory
Damped oscillatory

xt $\tau = 0.48$

vt $\tau = 0.48$

Space (m)

2500 2600 2700 2800 2900 3000

140 150 160 170 180 time (s)

speed (m/s)

0 10 20 30 40

140 150 160 170 180 time (s)
Asymptotically unstable
Locally unstable

xt tau=2

vt tau=2
Multiple leaders

• Instead of $a=a(\text{Xleader},\text{Xfollower})$
 $\Rightarrow a=a(\text{Xleaders, Xfollowers})$
 in which $X=\{\text{pos, speed, acceleration, ...}\}$

• How does this influence stability
 A – improves (more stable)
 B – worsens (less stable)
 C – no influence
Design a multi-leader model

• How would you design a multi-leader model? Inspired by IDM or Newell…

\[
\dot{v}_\alpha = \frac{dv_\alpha}{dt} = a \left(1 - \left(\frac{v_\alpha}{v_0} \right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha} \right)^2 \right)
\]

with \(s^*(v_\alpha, \Delta v_\alpha) = s_0 + v_\alpha T + \frac{v_\alpha}{2} \frac{\Delta v_\alpha}{\sqrt{ab}} \)
Approaches for multi-leader models

• (Your models?)
Action point models

• The assumption of continuous and perfect operation is unrealistic

• Why?
Perception thresholds

- People do not notice small speed differences at large distances
- What are observation thresholds?
Principle by Wiedeman

1. A follower with a speed larger than the leader approaches with constant relative speed

2. When the threshold is reached, the driver decelerates

3. Deceleration until $\Delta v = 0$

4. No notice that driver over-decelerates, so relative acceleration

$v_{\text{follower}} < v_{\text{leader}}$

$v_{\text{follower}} > v_{\text{leader}}$
Wiedeman: a second thought

- Wiedeman principle is not a car-following model

=> why not
The basics of car-following models
Action point models (cont’d)
The basics of car-following models

Action point models (cont’d)

- Action points not so bad compared with real-life data
- Where are the action points located?
The basics of car-following models

Action point models (cont’d)
Further problems

• Evaluation points:
 For behavioral results: analysis along wave speeds
 (~ aggregation method in lecture 6) => why?
CELLULAR AUTOMATA MODELS
Cellular automata models

- Roadways are divided into small cells with a constant length of $\Delta x \sim 5-10$ m.
- These cells are either occupied by one vehicle or not.
- Speeds are also discretised: $v = i \times \frac{dx}{dt}$, with $i = 0, 1, 2 \ldots$

- Small Δx might improve accuracy, but speed advantage lost.
Cellular automata models

• Updating of the vehicle’s dynamics is achieved through the following rules:
 • Acceleration: if a vehicle has not yet reached his maximum speed v_{max}, and if the lead vehicle is more than one cell away: $v = v + 1$
 • Braking: if a vehicle driving with a speed v has a headway of Δj with $\Delta j < v$ then the speed of the vehicle is reduced to $(\Delta j - 1)$;
 • Randomisation;
Learning goals

• Now, you can…
1. describe what a car-following model is
2. Calculate the following behaviour for the Newell (no equations given)
3. Calculate the following behaviour for IDM and other models given in document on blackboard (equations will be given)
4. Comment on stability (local, platoon, traffic)
5. Derive the fundamental diagram from a car-following equation
6. Describe the principle of cellular automata
7. Describe the Wiedeman principle