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1 & 2.

Fundamentals of aerodynamics
Anderson chapters 2.1 —-2.5and 4.1 — 4.4

Leonard Euler Daniel Bernoulli
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Subjects

Fundamental quantities

* pressure
 density
* temperature
 velocity

Equation of state
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Pressure is the normal force per unit
area on a surface

d The pressure in point B is:

9 p=|im(3—ij dA = 0

dA = element surface around BPressure is force per unit area

dF = force on 1 side of dA Dimension of pressure = [NAnN
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Density of a substance is its mass
per volume

The density in point B is:

dv

| Density IS mass per volume
dv = element volume around|B y P

dm = mass of gas in dv Dimension of density = [kg/fh
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Temperature is a measure of the
average kinetic energy of the
particles in the gas

Temperature is a measure of the average kinetic energy
of the particles in the gas:

KE :§kT,
2

with k= Boltzmann constant ( 1.38x30J/K)

Dimension of temperature : K (Kelvin)
°C (degree Celsius),
with K =273.15+C
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Relation among pressure, density
and temperature is the equation
of state

A perfect gasis a gas in which intermolecular forces are
negligible

The equation of state for a perfect gas is:

p = pRT

With gas constarik:

R =287,05 J/(kg)(K

& ]
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The equation of state for a non-
perfect or actual gas

For an actual gas the equation of state is approximated by the
Berthelot equation:

P _,, 8 _bp
PRT T 13

The difference with the equation of state for a perfect gas
becomes smaller gsdecreases ofl increases

( The distance between the molecules Incae s e S)
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The Benedict-Webb-Rubin (BWR) equation of state [2,3] within temperature range from -30 to 150°C,
for densities up to 900kg/m3, and maximum pressure of 200bar:

where o By Cpr @, b, ¢, a, y —gas constants for the equation
0.313 kg m> sZ mol2

5.1953%105 m3 mol™!

1.289x10% kg m> K2 s2 mol2

.109 x105 kg m® s2 mol-3

.775x10% m® mol 2

.398 kg m8 K2 52 mol3

.377x10""* m? mol3

.301x10% m® mol2

O > >

0
0
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Ex 2.1 Compute the temperature in a point on a wing of a Boeing 747,
where pressure and density are given to be: 0.7 x 10° N/m?2 and 0.91 kg/m3

T =268.0K
= -5.2°C
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Pressure, density and temperature
under standard conditions

P.=1.01325 * 10 N/m?
p.=1.225 kg/m

T,=288.15 K
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Ex. Compute the total weight of air in a room of
30 m x 15 m x 5 m under standard atmospheric
conditions at sea level.

Volume=2250 m?
p=1.225 kg/m?3
Weight = 2756 kg
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Definition of specific volume

pv =RT
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Ex 2.3 Compute the density and specific volume of air in a wind tunnel at
P = 0.3 atm, and -100° C.

p=—L p= 0.3X105/(287.05 x 173.15)
RT — 0.60 kg/m?
v = 1.66 m3/kg
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Velocity and streamlines

V = % [M/s] v
oli

dy /

B streamline

S T~ dx

The velocity in point B is the velocity of an infinitesimally
small fluid element as it sweeps through B
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Visualisation of the velocity and streamlines

Aluminum Particles in water

— - - e

- - — - - e ————— e e SR T <

Smoke traces in air
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Velocity and streamlines

\Y streamline

Stagnation point (stuwpunt, V=0
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Aerodynamic forces

Shear stress or friction force
CXTW

Pressure distribution
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Homework:

Problems 2.1, 2.7 and 2.8 from

Anderson, page 102 (sixth edition)
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Fundamental equations

e Continuity equation: Conservation of mass

e Momentum equation (Euler egn.): Conservation of
momentum

 Bernouilli's law for incompressible flow
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Continuity equation: Time rate of change
of the mass of a material region is
zero (mass is conserved)

/

—

For 1-directional .
incompressible flow: ~ Min — Mou
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dm

m:F dm =p (Qdt), Q = AV
+ = M _ pAVdL = pAV
dt at

pAV = constant
p1A V= p2A2V2

Continuity equation for 1-dimensional incompressible flow

(assumption: p and V uniformly distributed over A, or:

p and V are mean values)
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Example 4.1: Consider a convergent duct with an inlet
area A, = 5 [m?]. Air enters this duct with a velocity
V; =10 [m/s] and leaves the duct exit with a
velocity V, = 30 [m/s]|. What is the area of the duct
exit?

Assume a steady, incompressible 1-directional flow

PAV, = pAV,
V 1
Azsz1V1=A1—1:5*—O:1.67[m2]
PV, V,
Application of the continuity law:.................... e.g. wind tunnels
4 .
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Circuit layout of Delft University Open-jet Facility
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Euler equation

Newton’s Second Law:

F=m.a ( Force = mass * acceleration)

Applied to a flowing gas :

4 P dx
X dz

‘ dx
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Euler equation, left hand part of
F=m¥a

In reality 3 forces act on this element:
e Pressure force

e Friction force
o Gravity force

In the derivation we neglect 2 forces:
e Neglect the gravity force (small)

e Neglect the viscosity =——=> No friction forces
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Euler equation, left hand part

(F=m*a)
dy
The force in x-direction: , 0+dp
_ dp
F = pdydz- ( p+— dxj dydz dz
dx Ix

Hence: F= _% dXdde = force on fluid element due to
] dx pressure
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Euler equation, right hand part
(F=m*a) and resulting equation

The mass (m) of the fluid elementis: m = p.Vol = pdxdydz

dV dde dVv
a= V
dt dx dt dx

Acceleration (a) of the fluid element is:

Substitution in F = m*a —) - p(olxdydj p(dxdydzv v
dx

or: dp=-pVdV

& ]
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Resulting equation:

dp = —pVdV

1. Itis a relation between Force and

Momentum
2. Also called the momentum eqguation

EU]_CI’ equation Euler (1707 - 1783)

Swiss Mathematician
€"+1=0 €9 =cosd+isingd
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Euler equation

dp = —-pVdV

Keep in mind for this equation:

> Gravity forces are neglected

> Viscosity is neglected (inviscid flow)
> Steady flow

» Flow may be compressible!

The Euler equation is a Differential equation
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Bernoulli’s law for inviscid and
incompressible flow, gravity forces
neglected

Integrate Euler equation (dp + pVdV = 0) along streamline
between point 1 and 2:

P2 Vo 1
[ap+ [ovav=0 TS
Py Vi \,
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Bernoulli’s law for inviscid and
incompressible flow, gravity forces
neglected

Vo

1,1
jdp+ijdV 0 - (p,- )+p(§ 2-Evi)=0

Py Vl

Q
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Bernoulli’s law for inviscid and
incompressible flow, gravity forces
neglected

= {opstant along a streamline

P+ 5PV
T T

Static Dynamic Total
pressure  pressure  pressure

3
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Bernoulli’s law for inviscid and
incompressible flow, gravity forces
neglected

Bernoulli's law:

p + — p V 2 = constant along a streamline

2

Daniel Bernoulli (1700-1782)
Dutch born (Groningen, 29 jan. 1700),
Swiss Mathematician
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Application of Bernoulli’s principle

4.0 -

Cp

-3.0 1

2.0 -

-1.0 -

0.0

1.0 -

The pressure distribution over an aerofoil

=

]
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Remember

 Bernoulli equation only for inviscid = frictionless,
incompressible flow

* Bernoulli equation is valid along a streamline
» For compressible flow => Euler equation !

 Momentum equation, Euler equation and Bernoulli equation is in
fact F = m(a (Newton) applied to fluid dynamics.
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Ex 4.4. Consider the same convergent duct as in example 4.1. If
the air pressure and temperature at the inlet are p; = 1.2
x 10° N/m? and T,=330K, respectively, calculate the
pressure at the exit.

4 -
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Example: Consider the same convergent duct as in the previous
example. If the air pressure and temperature at the inlet
are p; = 1.2 x 10° [N/m?] and T,=330 [K] respectively,
calculate the pressure at the exit

»Assume inviscid, incompressible flow
> Neglect the gravity forces
»0n a streamline in the duct: Apply Bernoulli’s law!

1
p1+2:0V1 P2t— :0V2 - Py= Pyt ,0(V2 )

_ _p . l2¥10 :
=pRT, - p=—t = =1.266 [ka/m’]
= (287.15*33(

p, = |01+%p(v12 -V;7)=1.2%10° +%*1.266*(102— 30) = 1.19*16 (N/m?]

2
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Example: Consider an airfoil in a flow of air, where far ahead
(upstream) of the airfoil, the pressure, velocity and
density are: 1.01 x 10° [N/m?|, 150 [km/h] and 1.225
[kg/m3] respectively. At a given point A on the airfoil the
pressure is 9.95 x 10* [N/m?]. What is the velocity in
point A?

»Assume inviscid, incompressible flow
»Neglect the gravity forces

»0n a streamline near the airfoil: Apply Bernoulli's law!

— A

°8

3
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Example: Consider an airfoil in a flow of air, where far ahead
(upstream) of the airfoil, the pressure, velocity and
density are: 1.01 x 10° [N/m?], 150 [km/h] and 1.225
[kg/m?3] respectively. At a given point A on the airfoil the
pressure is 9.95 x 10* [N/m?]. What is the velocity in

point A?

Assume that point A and oo are on the same streamline. Bernoulli
then gives:

1
(p. - pA)+§pme

1 1
poo +51000V002 = pA +§,000VA2 - VA =

Ip
T
2 - 2(1.01*10 - 9.95*10 2
VA — (poo pA) +V002 — ( ) +(1_50j — 64.7[m/s]
0. 1.225 3.6
4 .
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e Problems 4.3 and 4.5
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