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5.
Compressibility continued
Anderson 4.13 – 4.14

Ernst Mach

1838-1916
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Summary of equations

Continuity equation A1V1 = A2V2

V2
2  

2
1

 + p2 = V2
1  

2
1

 + p1 ρρBernoulli’s equation

For steady,  frictionless,  incompressible flow:
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Pitot tube to measure velocity

2 2
1 1 2 2

1 1

2 2
p V p Vρ ρ+ = +

2
1

1
 ρ  V

2
p− =pt

p2=p1

V2=V1

Pt1=Pt2=Pt

1
2

V=0



6



7



8

For steady, isentropic compressible flow 
(adiabatic and frictionless) :

Continuity equation ρ1A1V1 = ρ2A2V2








 γ
γ

=










ρ
ρ

γ

T2

T1 1-  
2

1 = 
p2

p1
Isentropic relations

V 
2
1

 + Tc = V 
2
1

 + Tc 2
22p

2
11pEnergy equation

Equation of state P = ρRT
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Example :   Re-entry Space Shuttle.
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Re-entry Space Shuttle Orbiter

Just info:

h=30,480 m

V= 1208 m/s

M1=4

1 Bow shock wave

P2= 2347 N/m2

T2 = 953 K

P3= 1240 N/m2

P4= 704 N/m2

T= ?

V= ?

M= ?

In 3,4

Boundary layer

4

3

2
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Speed of sound

moving sound wave with speed a

into a stagnant gas

p

ρ
T

p+dp

ρ +dρ
T+dT

≡
is equal to

motionless sound wave

p

ρ
T

p+dp

ρ +dρ
T+dT

a

static observer observer moving with sound wave

a + da
a
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Speed of sound

Apply the continuity equation:

ρ1A1V1 = ρ2A2V2 ⇒ ρA1a = (ρ + dρ) A2 (a+da)

1-dimensional flow⇒A1 = A2 = A = constant

Thus: ρa = (ρ + dρ)(a + da) ⇒ ρa = ρa + adρ + ρda + dρda

small, ignoreρ
ρ

d
da

 - =a ⇒
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








ρd
dp

isentropic
 =a 

Speed of sound

Now apply momentum equation (Euler equation) ⇒

dp = -ρVdV ⇒ 1
dp = - ada  da = -  dp

a
ρ

ρ
⇒

We obtain   ⇒
1 dp

a = +    
a d

ρ
ρ ρ ⇒

ρd
dp

 = a2 Going through the sound wave there is

no heat addition, friction is negligible ⇒

da
a = -  

d
ρ

ρSubstituting this into
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Speed of sound

Now we may apply the isentropic relations.

We want to rewrite
dp

dρ
p

a =  γ
ρ

p
 = RT 

ρ
⇒

 RT =a γ

Use the equation of state:

Speed of sound in a perfect gas depends only on T !

With isentropic relations we find



15

a =  RTγ

V
M

a
=

In honor of Ernst Mach the name “Mach number” was introduced in 
1929 by Jacob Ackeret

Mach Ackeret
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Equations for a perfect gas

• We defined: h=e + pv

• We found :           h=cpT and e= cvT

• With the eq. of state:            pv=RT

• we find: cpT=cvT+ RT

• hence:     cp=cv+ R  => cp-cv= R

p

v

 c
= 

c
γ

1p

 R
c = 

γ
γ −

We defined:
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Isentropic flow relations, second form

  

Energy equation:  2
p

1
T +   = constant c V

2
 

       2 2
1 op 1 p o

1 1
  +   =   +  c V c VT T

2 2
 

 
Assume index 0 = stagnation point ⇒ Vo = 0 ⇒ 
 

2
o 12

1 op 1 p
1 1p

1 VT  +   =       = 1 + c V cT T
2 2cT T

⇒  

Substitute:    
1p

R
C

γ
γ

=
−

      (from p vC C R− = )  

 

    
2

o 1

1 1

-1 VT  = 1 +  
2T RT

γ
γ
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Isentropic flow relations, second form
 
 

with RT2
1a γ=  

 
Bring flow isentropically to rest  ⇒ Isentropic relation can be used ⇒ 

 

                                 






 γ
γ












ρ
ρ γ

T1

To 1- = 
1
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p1

po  

 







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γ

M2
1 

2

1-
 + 1 1- = 

p1

po                  






 γ γ
ρ
ρ

M2
1 

2
1-

 + 1 1-
1

 = 
1

o  

M2
1 

2
1-

 + 1 = 
a2
1

V2
1 

2
1-

 + 1 = 
T1

To γγ
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Second form of isentropic relations

o 2
1

1

γ-1T  = 1 +  M
2T








 γ γ
ρ
ρ

M 2
1 

2
1-

 + 1 1-
1

 = 
1

o

γ

γ-1
2o
1

1

p γ-1
  =  1 +  M

2p
 
 
 
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Compressibility

M
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

1 1

2 1-

1

0
 M

2

1-
 + 1  = 

−

γ
























 γ
ρ
ρ

0

ρ
ρ

For M < 0.3 the change in density is less than 5 %

Thus : for M < 0.3 the flow can be treated as incompressible

Derived from energy equation

and isentropic relations



22

Supersonic wind tunnel and rocket engine

Rocket motor must be LIGHT

Thus the nozzle is short

Exhaust of Saturn V 

that powered the Apollo 
space missions

M<1 M>1
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Supersonic Wind Tunnel

M=1

Throat

M<1

Supersonic flow

M >1 Pe

Te

p0

T0

V≈0

Reservoir
Exit

Subsonic flow

For both the wind tunnel and a rocket motor we can derive 

an area velocity relation using the continuity and the Euler equation
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Supersonic tunnel and rocket engine

constVAρ = ln ln ln ln( )A V constρ + + =

0
d dA dV

A V

ρ
ρ

+ + = dp VdVρ= −

0
d VdV dA dV

dp A V

ρ− + + = 2

1 1d
dpdp a

d

ρ

ρ
= =

2
0

VdV dA dV

a A V

− + + =
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  Area-Velocity Relation 
 

2dA dV
 = ( -1) M

A V  

 
Conclusions: 
 
Case A. Subsonic flow if dV > 0 then  
                 dA < 0 and vice versa. 
Case B. Supersonic flow if dV > 0 then  
                 dA > 0 and vice versa. 
Case C. If the flow is sonic (M=1) then .... 

Supersonic wind tunnel: area velocity relation
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Supersonic windtunnel: M=1 in the throat

•   2

dV 1 dA 1 dA
 =    =  !

V -1 A 0 AM

 
 
 

 

 

•    At first glance we see 
dV

 = 
V

∞ .   

     But this is not possible on physical basis. 
 

•    Then we must have (for finite dV

V
): dA

 = 0
A

 ⇒
dV 0

 =  = FI NITE!
V 0  

 

•    If 
dA

 = 0
A  ⇒  

 

In the THROAT :  M = 1  !
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Nozzle flow

o 2
1

1

γ-1T  = 1 +  M
2T








 γ γ
ρ
ρ

M2
1 

2
1-

 + 1 1-
1

 = 
1

o

flow

ρ/ρ0

1

1 T/T0

1

1

M

P/P0

γ

γ-1
2o
1

1

p γ-1
  =  1 +  M

2p
 
 
 

X ->

* * for M=1 
conditions 
(T*,p*…)
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Example 4.9:   A supersonic wind tunnel is considered.

The air temperature and pressure in the reservoir of the tunnel are: 

T0 = 1000 K and p0 = 10 atm. 

The static temperatures at the throat and exit are:

T* = 833 K and Te = 300 K. 

The mass flow through the tunnel is 0.5 kg/s. 

For air, cp = 1008 J/(kg K). Calculate:

a) Velocity at the throat V*

b) Velocity at the exit Ve

c) Area of the throat A*

d) Area of the exit Ae
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6.
Viscous flows
Anderson 4.15 - 4.16

Osborne Reynolds     Ludwig Prandtl

1842-1912 1874-1953
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Subjects lecture 6

• Viscous flows

• Laminar boundary layers

- calculation of boundary layer thickness

- calculation of skin friction drag
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Viscous flow

Inviscid flow (No friction)
NO DRAG

Viscous flow (friction)
FINITE DRAG

Up till now we have only dealt with frictionless flow.

What is the effect of friction ? ….

D
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Viscous flow

In real life the flow at the surface adheres to the surface

because of friction between the gas and the solid material:

�Right at the surface the velocity is zero
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Boundary layer

(exaggerated)

Friction force
Boundary layer

V

�In the vicinity of the surface there is a thin region of 

retarded flow: the boundary layer

�The pressure through the boundary layer in a direction

perpendicular to the surface is constant
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Viscous flow

Inside the boundary layer 

Bernoulli’s law is not valid!!!!!!
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Viscous flows

velocity profile

boundary layer
thickness, δ

Shear stress can be 
written as :

µ = absolute viscosity coefficient or viscosity
Air at standard sea level : µ=1.789*10-5 kg/ms)

0y
w dy

dU

=







µ=τ

shear stress, τw

⇒ skin friction drag

Boundary layer
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Viscous flow

 

 
dy

dU
  = µτ  

 
 
 
Fluids for which the shearing stress is linearly related to the rate of shearing strain 

are called: 
NEWTONIAN FLUIDS. 

(Most common fluids (liquids & gases) like are are NEWTONIAN!). 
 

Often viscosity appears as 
ρ
µν  =   = “KINEMATIC VISCOSITY” 

viscosity or” dynamic viscosity” 
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Reynolds number

Re =
⋅V L

ν

Characteristic velocity Characteristic length

(kinematic) viscosity

Sail planes : Re ≈ 1•106,  L=wing chord
Passenger jets : Re ≈ 50•106  Idem
Lower leg athlete : Re ≈ 1•105     L=Diameter leg

Osborne Reynolds

1842-1912
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Viscous flows, some definitions

Reynolds number :

Laminar flow   : streamlines are smooth and regular and a fluid 

element moves smoothly along a streamline

Turbulent flow : streamlines break up and a fluid element moves

in a random irregular way

,
µ

 xV ρ
Rex

∞

∞∞=

x

δV∞

dimensionless, and varies linearly with x
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Laminar boundary layer, boundary 

layer thickness

Consider flat plate flow. What is boundary layer thickness δ
and skin friction drag Df at location x?

x

δ
V∞

From laminar boundary layer theory :
xRe

x2.5=δ

Thus δ is proportional to : √x  (parabolically)
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  Total force = total pressure force + total friction force

 Total friction force on element dx is: dx (x)w = 1dx(x)w τ⋅⋅τ
                                            

 Total skin friction drag is:                  dxw 
L

o
 = D f τ∫     

τw
dx

L

x

1 (unit width)
width)

Laminar boundary layer, skin friction 

drag
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Laminar boundary layer, skin friction 

drag 

For the skin friction coefficient we find from laminar             
                     boundary layer theory : 
 

    Re

0.664
 = 

q
 = 

V 
2

1
 = c

x

w

2

w
f x

∞∞∞

τ

ρ

τ

   

 

Thus 
xfC  and wτ   decrease as x . 

 

  The skin friction at the beginning of the plate is larger            
   than near the trailing edge. 

To calculate the total aerodynamic force we must integrate! 
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Laminar boundary layer, skin friction 

drag

Re

dx
  q0.664 = dx q . c  = D

x

L

o

f

L

o

f x ∫∫ ∞∞ x
dx

 
L

o
 

/V

q 0.664
 = ∫ν∞

∞

 x 2 = x 1/2-  = 
x

dx
∫∫

ν∞∞
∞

ν∞∞
∞

L/V

Lq1.328
 = L2 

/V

q 0.664
 = Df

 
Sq

Df = Cf
∞

Define total skin friction drag coefficient as

 
1 LReL

1.328.L
 = 

S

L
 

ReL

1.328
 = Cf ⋅ ReL

1.328
 = Cf
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ReL

1.328
 = Cf

Only for low speed incompressible flow
(and reasonably accurate for high speed subsonic flow).

LRe = Reynolds nr. based on length L.

The skin friction coefficient for a 

laminar boundary layer
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