Introduction to Aerospace Engineering

Lecture slides

Introduction to Aerospace Engineering Aerodynamics 5 & 6

Prof. H. Bijl ir. N. Timmer

5.

Compressibility continued Anderson 4.13 – 4.14

Ernst Mach

1838-1916

Summary of equations

For steady, frictionless, incompressible flow:

Continuity equation $A_1V_1 = A_2V_2$ Bernoulli's equation $p_1 + \frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}\rho V_2^2$

TUDelft

For steady, isentropic compressible flow (adiabatic and frictionless) :

Example : Re-entry Space Shuttle.

Speed of sound

Apply the <u>continuity equation</u>:

 $\rho_1 A_1 V_1 = \rho_2 A_2 V_2 \Longrightarrow \quad \rho A_1 a = (\rho + d\rho) A_2 (a + da)$

<u>1-dimensional flow</u> \Rightarrow A₁ = A₂ = A = constant

Thus: $\rho a = (\rho + d\rho)(a + da) \Rightarrow \rho a = \rho a + ad\rho + \rho da + d\rho da$

TUDelft

Speed of sound

Now we may apply the isentropic relations.

We want to rewrite $\frac{dp}{d\rho}$ With isentropic relations we find $a = \sqrt{\gamma \frac{p}{\rho}}$ Use the equation of state : $\frac{p}{d\rho} = RT \Rightarrow$

 $a = \sqrt{\gamma RT}$

Speed of sound in a perfect gas depends only on T !

$$a = \sqrt{\gamma RT}$$

In honor of Ernst Mach the name "Mach number" was introduced in 1929 by Jacob Ackeret

Speed of sound

The Mach number is:

$$M = \frac{V}{a}$$

M < 1	subsonic
M = 1	sonic
M around 1	transonic
M > 1	supersonic
M > 5	hypersonic

All velocity ranges have their own specific phenomena!

Equations for a perfect gas

- We defined: h=e+pv
- We found : $h=c_pT$ and $e=c_vT$
- With the eq. of state: pv=RT
- we find: $c_p T = c_v T + RT$

• hence:
$$c_p = c_v + R => c_p - c_v = R$$

We defined: $\gamma = \frac{c_p}{c_v}$

Isentropic flow relations, second form

Energy equation:

$$c_{p}T + \frac{1}{2}V^{2} = constant$$

 $c_{p}T_{1} + \frac{1}{2}V_{1}^{2} = c_{p}T_{o} + \frac{1}{2}V_{o}^{2}$

Assume index 0 = stagnation point \Rightarrow V_o = 0 \Rightarrow

$$c_p T_1 + \frac{1}{2} V_1^2 = c_p T_o \Rightarrow \frac{T_o}{T_1} = 1 + \frac{V_1^2}{2c_p T_1}$$

Substitute: $C_p = \frac{\gamma R}{\gamma - 1}$ (from $C_p - C_v = R$)

Isentropic flow relations, second form

with
$$a_1^2 = \gamma RT$$
 $\frac{T_0}{T_1} = 1 + \frac{\gamma - 1}{2} \frac{V_1^2}{a_1^2} = 1 + \frac{\gamma - 1}{2} M_1^2$

Bring flow isentropically to rest \Rightarrow Isentropic relation can be used \Rightarrow

$$\frac{\mathbf{p}_{\mathbf{O}}}{\mathbf{p}_{1}} = \left(\frac{\mathbf{p}_{\mathbf{O}}}{\mathbf{p}_{1}}\right)^{\gamma} = \left(\frac{\mathbf{T}_{\mathbf{O}}}{\mathbf{T}_{1}}\right)^{\gamma-1}$$

$$\frac{\mathbf{p}_{\mathbf{0}}}{\mathbf{p}_{1}} = \left(1 + \frac{\gamma - 1}{2} \mathbf{M}_{1}^{2}\right)^{\frac{\gamma}{\gamma - 1}} \qquad \qquad \frac{\mathbf{p}_{\mathbf{0}}}{\mathbf{p}_{1}} = \left(1 + \frac{\gamma - 1}{2} \mathbf{M}_{1}^{2}\right)^{\frac{\gamma}{\gamma - 1}}$$

Second form of isentropic relations

$$\frac{T_o}{T_1} = 1 + \frac{\gamma - 1}{2} M_1^2$$
$$\frac{p_o}{p_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{1}{\gamma - 1}}$$
$$\frac{p_o}{p_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Compressibility

For M < 0.3 the change in density is less than 5 %

Thus : for M < 0.3 the flow can be treated as incompressible

Supersonic wind tunnel and rocket engine

Rocket motor must be LIGHT Thus the nozzle is short

Exhaust of Saturn V that powered the Apollo space missions

TUDelft

Supersonic Wind Tunnel

For both the wind tunnel and a rocket motor we can derive an area velocity relation using the continuity and the Euler equation

TUDelft

Supersonic tunnel and rocket engine $\rho VA = \text{const}$ $\ln \rho + \ln A + \ln V = \ln(\text{const})$ $\frac{d\rho}{dr} + \frac{dA}{dr} + \frac{dV}{dr} = 0$ $dp = -\rho V dV$ ρ A V $\frac{-d\rho VdV}{dp} + \frac{dA}{A} + \frac{dV}{V} = 0 \qquad \qquad \frac{d\rho}{dp} = \frac{1}{\frac{dp}{d\rho}} = \frac{1}{a^2}$ 17.117 .1.1 117

$$\frac{-VaV}{a^2} + \frac{aA}{A} + \frac{aV}{V} = 0$$

TUDelft

Supersonic wind tunnel: area velocity relation

Area-Velocity Relation

$$\frac{dA}{A} = (M^2 - 1)\frac{dV}{V}$$

Conclusions:

- Case A. Subsonic flow if dV > 0 then dA < 0 and vice versa.
- Case B. Supersonic flow if dV > 0 then dA > 0 and vice versa.
- Case C. If the flow is sonic (M=1) then

Supersonic windtunnel: M=1 in the throat

•
$$\frac{dV}{V} = \left(\frac{1}{M^2 - 1}\right) \frac{dA}{A} = \frac{1}{0} \frac{dA}{A}!$$

- At first glance we see $\frac{dV}{V} = \infty$. But this is not possible on physical basis.
- Then we must have (for finite $\frac{dV}{V}$): $\frac{dA}{A} = 0 \implies \frac{dV}{V} = \frac{0}{0} = FINITE!$

• If
$$\frac{dA}{A} = 0 \implies$$
 In the THROAT : M = 1 !

TUDelft

Example 4.9: A supersonic wind tunnel is considered.

The air temperature and pressure in the reservoir of the tunnel are: $T_0 = 1000$ K and $p_0 = 10$ atm.

The static temperatures at the throat and exit are: $T^* = 833$ K and $T_e = 300$ K.

The mass flow through the tunnel is 0.5 kg/s. For air, $c_p = 1008 \text{ J/(kg K)}$. Calculate:

- a) Velocity at the throat V*
- b) Velocity at the exit V_e
- c) Area of the throat A*
- d) Area of the exit A_e

6.

Viscous flows Anderson 4.15 - 4.16

Osborne Reynolds Ludwig Prandtl

1842-1912

1874-1953

Subjects lecture 6

Viscous flows

- Laminar boundary layers
 - calculation of boundary layer thickness
 - calculation of skin friction drag

Viscous flow

Up till now we have only dealt with <u>frictionless flow</u>.

What is the effect of friction ?

Inviscid flow (No friction) NO DRAG Viscous flow (friction) FINITE DRAG

Viscous flow

In real life the flow at the surface adheres to the surface because of friction between the gas and the solid material:

≻Right at the surface the velocity is zero

In the vicinity of the surface there is a thin region of retarded flow: the boundary layer
The pressure through the boundary layer in a direction perpendicular to the surface is constant

Viscous flow

Inside the boundary layer

Bernoulli's law is not valid!!!!!!

Shear stress can be written as :

shear stress, τ_w \Rightarrow skin friction drag

 μ = absolute viscosity coefficient or viscosity Air at standard sea level : μ =1.789*10⁻⁵ kg/ms)

Viscous flow

$$\tau = \mu \frac{dU}{dy}$$

viscosity or" dynamic viscosity"

Fluids for which the shearing stress is <u>linearly</u> related to the rate of shearing strain are called:

NEWTONIAN FLUIDS.

(Most common fluids (liquids & gases) like are are NEWTONIAN!).

Often viscosity appears as $v = \frac{\mu}{\rho}$ = "KINEMATIC VISCOSITY"

Reynolds number

Osborne Reynolds 1842-1912

Sail planes	: Re \approx 1•10 ⁶ , L=wing chord
Passenger jets	: Re ≈ 50•10 ⁶ Idem
Lower leg athlete	: Re $\approx 1 \cdot 10^5$ L=Diameter leg

dimensionless, and varies linearly with x

Laminar flow : streamlines are smooth and regular and a fluid element moves smoothly along a streamline

Turbulent flow : streamlines break up and a fluid element moves in a random irregular way

Laminar boundary layer, boundary layer thickness

Consider flat plate flow. What is boundary layer thickness δ and skin friction drag D_f at location x?

From **laminar** boundary layer theory :

Thus δ is proportional to : \sqrt{x} (parabolically)

Laminar boundary layer, skin friction drag

Total force = total pressure force + total friction force

Total friction force on element dx is: $\tau_W(x) \cdot dx \cdot 1 = \tau_W(x) dx$

$$D_{f} = \int_{O}^{L} \tau_{W} dx$$

TUDelft

Laminar boundary layer, skin friction drag

For the skin friction coefficient we find from laminar boundary layer theory :

$$c_{f_{x}} = \frac{\tau_{w}}{\frac{1}{2}\rho_{\infty}V_{\infty}^{2}} = \frac{\tau_{w}}{q_{\infty}} = \frac{0.664}{\sqrt{Re_{x}}}$$

Thus c_{f_x} and $\tau_w\,$ decrease as $\sqrt{x}\,.$

The skin friction at the beginning of the plate is larger than near the trailing edge.

To calculate the total aerodynamic force we must integrate!

Laminar boundary layer, skin friction drag

$$D_{f} = \int_{o}^{L} c_{f_{x}} \cdot q_{\infty} dx = 0.664 q_{\infty} \int_{o}^{L} \frac{dx}{\sqrt{Re_{x}}} = \frac{0.664 q_{\infty}}{\sqrt{V_{\infty}/v}} \int_{o}^{L} \frac{dx}{\sqrt{x}}$$

$$\int \frac{\mathrm{d}x}{\sqrt{x}} = \int x^{-1/2} = 2\sqrt{x}$$

$$D_{f} = \frac{0.664 \, q_{\infty}}{\sqrt{V_{\infty}/v_{\infty}}} \, 2\sqrt{L} = \frac{1.328 \, q_{\infty} \, L}{\sqrt{V_{\infty} \, L/v_{\infty}}}$$

Define total skin friction drag coefficient as C

$$C_f = \frac{D_f}{q_{\infty}S}$$

TUDelft

The skin friction coefficient for a laminar boundary layer

Only for low speed incompressible flow (and reasonably accurate for high speed subsonic flow).

 Re_L = Reynolds nr. based on length L.

