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Subjects lecture 7 & 8

• Viscous flows
• Laminar boundary layers
• Turbulent boundary layers 
• Transition 
• Separation



4

Viscous flow

Inviscid flow (No friction)
NO DRAG

Viscous flow (friction)
FINITE DRAG

Up till now we have only dealt with frictionless flow.

What is the effect of friction ? ….

D
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Viscous flow

In real life the flow at the surface adheres to the surface

because of friction between the gas and the solid material:

Right at the surface the velocity is zero
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Boundary layer

(exaggerated)

Friction force
Boundary layer

V

In the vicinity of the surface there is a thin region of 

retarded flow: the boundary layer

The pressure through the boundary layer in a direction

perpendicular to the surface is constant
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Viscous flow

Inside the boundary layer 

Bernoulli’s law is not valid!!!!!!
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Viscous flows

velocity profile

boundary layer
thickness, δ

Shear stress can be 
written as :

μ = absolute viscosity coefficient or viscosity
Air at standard sea level : μ=1.789*10-5 kg/ms)

0y
w dy

dU

=







μ=τ

shear stress, τw 
(schuifspanning)
 skin friction drag

Boundary layer
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Viscous flows, some definitions

Reynolds number :

Laminar flow   : streamlines are smooth and regular and a fluid 

element moves smoothly along a streamline

Turbulent flow : streamlines break up and a fluid element moves

in a random irregular way

x

ρ  V  x V  x
Re 

μ ν
∞ ∞ ∞

∞ ∞

= =

x

δV∞

dimensionless, and varies linearly with x
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Laminar boundary layer, boundary 
layer thickness

Consider flat plate flow. What is boundary layer thickness δ
and skin friction drag Df at location x?

x

δ
V∞

From laminar boundary layer theory :
xRe

x2.5=δ

Thus δ is proportional to : √x  (parabolically)
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  Total force = total pressure force + total friction force

 Total friction force on element dx is: dx (x)w = 1dx(x)w τ⋅⋅τ
                                            

 Total skin friction drag is:                  dxw 
L

o
 = D f τ     

τw
dx

L

x

1 (unit width)
width)

Laminar boundary layer, skin friction 
drag
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Laminar boundary layer, skin friction 
drag 

Re

0.664
 = 

q
 = 

V 
2

1
 = c

x

w

2

w
f x

∞∞∞

τ

ρ

τ

For the skin friction coefficient we find from laminar          
boundary layer theory :

Thus xfC and wτ decrease as x

The skin friction at the beginning of the plate is larger            
than near the trailing edge.

To calculate the total aerodynamic force we must integrate!

increases 
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Laminar boundary layer, skin friction 
drag

Re

dx
  q0.664 = dx q . c  = D

x

L

o

f

L

o

f x  ∞∞ x
dx

 
L

o
 

/V

q 0.664
 = ν∞

∞

 x 2 = x 1/2-  = 
x

dx


ν∞∞
∞

ν∞∞
∞

L/V

Lq1.328
 = L2 

/V

q 0.664
 = Df

 
Sq

Df = Cf
∞

Define total skin friction drag coefficient as

 
1 LReL

1.328.L
 = 

S

L
 

ReL

1.328
 = Cf ⋅ ReL

1.328
 = Cf
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Results for a turbulent boundary 
layer

δ laminar
δ turbulent

Due to the action of turbulence : 

no exact solution for turbulent boundary layers !

From experiments :

2.0
xRe

x37.0=δ

2.0
L

f
Re

074.0
C =

Note : Cf varies as L-1/5 for turbulent flow

while it changes as L-1/2 for laminar flow.

Thus the friction in a turbulent boundary layer

is larger than in a laminar flow
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Transition

Pipe flow experiment

Osborne Reynolds (1842-1912)
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Transition

Development of turbulent flow in pipes observed and sketched by Reynolds

(from his original paper)

Re > 2300  : transition from laminar to turbulent flow

Osborne Reynolds (1842-1912)
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Transition

Cf

Re

laminar

turbulent
transition
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Transition

Flat plate flow



19

Transition

Flow visualization experiment
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Transition

Growth of

Span wise vorticity

Generation of

turbulent spots

Fully

turbulent

flow

Three-dimensional

vortex

breakdown

Tollmien-

Schlichting

waves

Stable

laminar

flow

U∞
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Ludwig Prandtl (1875-1953)

•Boundary Layer theory (1904)
•Wing theory (1918 - 1919)
•Contributions to the theory of supersonic flow & turbulence
•Development of wind tunnels and other aerodynamic equipment
•Theory of plasticity and of meteorology.
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• Prandtl and his water tunnel (TU Hannover 1904)
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• FLOW OVER A PLATE WITH A SEMI-CIRCULAR LEADING EDGE

Zhiyin Yang and Peter Voke

Fluids Research Center, University of Surrey, U.K. The image represents the results of a hybrid DNS/LES (by Zhiyin Yang and Peter 

Voke) computation of separation, transition and reattachment of the flow over a plate with a semicircular leading edge
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Transition

transition

Flat plate flow

V

y
(mm)

u/V

laminar

turbulent

y

u

∂
∂μ=τ

Skin friction
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Transition

xcr

laminar

turbulent

transition

The critical Reynolds number at which transition occurs is

difficult to find.

It should be found from experimental data applicable for the

given problem

V
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Laminar-Turbulent Transition on airfoils

Turbulent
B/L

Laminar boundary layer: thin, low skin friction drag
Turbulent boundary layer: thick, high skin friction drag

Transition “point”

V

Laminar
B.L.
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turbulent laminar

transition

V

Airfoil model vertically spanning the wind tunnel
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Laminar flow favourable

We have seen that : turbulentwarminlaw τ<τ

Vast majority of flows is TURBULENT ! => 
We may adapt the geometry of the airfoil such that 
it favors laminar flow. We then have Laminar flow airfoils.

Favorable pressure gradient

Favorable pressure gradient

laminar flow airfoil
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Flow Separation

Why is it important?

When does it occur ?

CFD example
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Alternating separating vortices on a cilinder (Karman street)
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Unsteady behavior of construction due to 
separation
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Flow separation

separation point

Separation due to a positive pressure gradient
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Separation
From:
Van Dyke:
“An Album of
fluid motion”

aluminum 
powder
in water
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Flow Separation
Effect of pressure 

distribution

-Cp

-1.0

strong

adverse

pressure gradient

moderate

adverse

pressure gradient

separated flow

attached flow

pressure distribution without separation
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DU 91-W2-250
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transition

Separation at 
x/c=92%
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Separation at x/c=35%
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Flow Separation

Loss in lift (airfoil)

Increase in pressure drag

Generation of unsteady loads

Why is it important ?

Example : Interaction of separated vortex flow

with vertical stabilizer (F18)
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Flow Separation
• Effect of turbulence

u/U

laminar

turbulent

Boundary layer

Turbulent boundary layer has more

flow kinetic energy near the surface.

Thus flow separation may be postponed.
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Viscous drag

Drag due to viscous effects =  friction drag + pressure drag

=  profile drag

frictionpressurep DCDCDC +=
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Influence of the Reynolds number

Re=300000

Re=650000

Re=1200000

Cd high

Cd lower

Cd≈Cd(b)

a

b

c
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Effect on CD of shape and Re-no.
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Pressure drag
Pressure drag

Friction drag

Drag distribution

on Cylinder

θV
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10D

diameter D
V

Two objects with the same drag force
(ReD=105)
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Artificial transition

free transition
Re = 15000

artificial transition
Re = 30000

Flow over a sphere
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Artificial transition
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Use in sports:  
example 1 :speed skating

Effect of zigzag strips
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Measured drag characteristics of different fabrics on a cylinder
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lower leg
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Position of the strips
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Gianni Romme

World records speed skating men 5000 m:

8.36.6 Jaap Eden Hamar 1894

6.34.96 J. Olav Koss    Hamar 1994

6.30.62 Gianni Romme H’veen 1997*

6.22.20 Gianni Romme Nagano 1998

6.21.49 Gianni Romme Galgary 1998

Current: 

6.03.32 Sven Kramer Galgary 2007

* First on clap skatesResult: 8.4 seconds off WR
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Experimenting with aerodynamics
Cathy Freeman, 400 m. gold medalist, Sydney Olympics 2000
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Case study :

Usain Bolt
100m men world record holder

Example 2
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Measured effect of strips on the 
total aerodynamic drag:

• strips on lower legs -3 to -11 %

• strips on the cap -2 to -6 %
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First calculate the required power 
for the time of 9.58 s 
(V=10.44 m/s)

P = Cd.S.½.ρ.V3

Ppropulsion = 560 Watts

Location Berlin
air density 1.20 kg/m^3

parameters Bolt
length 1.96 m
mass 86 kg
Cd*S-total 0.82
Cd*S-legs 0.246

distance 100 m
min sec

0 9.58
V-average 10.44 m/s
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V3 = P /Cd.S.½.ρ.

Pprop = 560 Watts

Vav=10.479 m/s

Location
air density 1.20 kg/m^3

parametersBolt
length 1.96 m
mass 86 kg
Cd*S-total 0.806
Cd*S-legs 0.231 -6%

4
Then calculate new V with  

reduced drag of legs


