Introduction to Aerospace Engineering

Lecture slides

Introduction to Aerospace Engineering Aerodynamics 7&8

Prof. H. Bijl ir. N. Timmer

7 & 8.

Laminar and turbulent flows Anderson 4.15 - end of chapter 4.

Osborne Reynolds Ludwig Prandtl

1842-1912

Subjects lecture 7 & 8

- Viscous flows
- Laminar boundary layers
- Turbulent boundary layers
- Transition
- Separation

Viscous flow

Up till now we have only dealt with <u>frictionless flow</u>. What is the effect of friction ?

Inviscid flow (No friction) NO DRAG Viscous flow (friction) FINITE DRAG

Viscous flow

In real life the flow at the surface adheres to the surface because of friction between the gas and the solid material:

≻Right at the surface the velocity is zero

In the vicinity of the surface there is a thin region of retarded flow: the boundary layer
 The pressure through the boundary layer in a direction

perpendicular to the surface is constant

Viscous flow

Inside the boundary layer Bernoulli's law is not valid!!!!!!

Shear stress can be written as :

shear stress, τw (schuifspanning) ⇒ skin friction drag

 μ = absolute viscosity coefficient or viscosity Air at standard sea level : μ =1.789*10⁻⁵ kg/ms)

dimensionless, and varies linearly with x

Laminar flow : streamlines are smooth and regular and a fluid element moves smoothly along a streamline

Turbulent flow : streamlines break up and a fluid element moves in a random irregular way

Laminar boundary layer, boundary layer thickness

Consider flat plate flow. What is boundary layer thickness δ and skin friction drag D_f at location x?

From **laminar** boundary layer theory :

TUDelft

Thus δ is proportional to : \sqrt{x} (parabolically)

Laminar boundary layer, skin friction drag t_x t_x

Total force = total pressure force + total friction force

Total friction force on element dx is: $\tau_W(x) \cdot dx \cdot 1 = \tau_W(x) dx$

Total skin friction drag is:

$$D_{f} = \int_{O}^{L} \tau_{W} dx$$

Laminar boundary layer, skin friction drag

For the skin friction coefficient we find from laminar boundary layer theory :

$$c_{f_{x}} = \frac{\tau_{w}}{\frac{1}{2}\rho_{\infty}V_{\infty}^{2}} = \frac{\tau_{w}}{q_{\infty}} = \frac{0.664}{\sqrt{Re_{x}}}$$

Thus C_{f_x} and τ_w decrease as \sqrt{x} increases

The skin friction at the beginning of the plate is larger than near the trailing edge.

To calculate the total aerodynamic force we must integrate!

Laminar boundary layer, skin friction drag

$$D_{f} = \int_{o}^{L} c_{f_{x}} \cdot q_{\infty} \, dx = 0.664 \, q_{\infty} \int_{o}^{L} \frac{dx}{\sqrt{Re_{x}}} \qquad = \frac{0.664 \, q_{\infty}}{\sqrt{V_{\infty}/V}} \int_{o}^{L} \frac{dx}{\sqrt{x}}$$

$$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}} = \int \mathrm{x}^{-1/2} = 2 \sqrt{\mathrm{x}}$$

$$D_{f} = \frac{0.664 \, q_{\infty}}{\sqrt{V_{\infty}/v_{\infty}}} \, 2\sqrt{L} = \frac{1.328 \, q_{\infty} \, L}{\sqrt{V_{\infty} \, L/v_{\infty}}}$$

TUDelft

Define total skin friction drag coefficient as

 $C_f = \frac{D_f}{q_{\infty}S}$

$$C_{f} = \frac{1.328}{\sqrt{Re_{L}}} \frac{L}{S} = \frac{1.328.L}{\sqrt{Re_{L}} L \cdot 1} \qquad \square > \quad C_{f} = \frac{1.328}{\sqrt{Re_{L}}}$$

Due to the action of **turbulence** :

no exact solution for turbulent boundary layers !

From experiments :

$$\delta = \frac{0.37x}{\text{Re}_{x}^{0.2}}$$
$$C_{f} = \frac{0.074}{\text{Re}_{L}^{0.2}}$$

Note : C_f varies as L^{-1/5} for turbulent flow while it changes as L^{-1/2} for laminar flow. Thus the <u>friction in a turbulent boundary layer</u> is larger than in a laminar flow

Pipe flow experiment

TUDelft

Development of turbulent flow in pipes observed and sketched by Reynolds (from his original paper)

TUDelft

Flow visualization experiment

Ludwig Prandtl (1875-1953)

- •Boundary Layer theory (1904)
- •Wing theory (1918 1919)
- •Contributions to the theory of supersonic flow & turbulence
- •Development of wind tunnels and other aerodynamic equipment
- •Theory of plasticity and of meteorology.

• Prandtl and his water tunnel (TU Hannover 1904)

Zhiyin Yang and Peter Voke

Fluids Research Center, University of Surrey, U.K. The image represents the results of a hybrid DNS/LES (by Zhiyin Yang and Peter

Voke) computation of separation, transition and reattachment of the flow over a plate with a semicircular leading edge

- ➤The critical Reynolds number at which transition occurs is difficult to find.
- ≻It should be found from experimental data applicable for the given problem

Laminar-Turbulent Transition on airfoils

Laminar boundary layer: thin, low skin friction drag *Turbulent* boundary layer: thick, high skin friction drag

Laminar flow favourable

 $\tau_{\rm w_{la\,min\,ar}} < \tau_{\rm w_{turbulent}}$ We have seen that :

Vast majority of flows is TURBULENT ! => We may adapt the geometry of the airfoil such that it favors laminar flow. We then have Laminar flow airfoils.

Alternating separating vortices on a cilinder (Karman street)

Unsteady behavior of construction due to separation

Separation

From: Van Dyke: *"An Album of fluid motion"*

aluminum powder in water

fUDelft

TUDelft

Flow Separation

Why is it important?

Loss in lift (airfoil)
Increase in pressure drag
Generation of unsteady loads

Example : Interaction of separated vortex flow with vertical stabilizer (F18)

Flow Separation

Effect of turbulence

Turbulent boundary layer has more flow **kinetic energy** near the surface. Thus flow separation may be postponed.

Boundary layer

Viscous drag

Drag due to viscous effects = friction drag + pressure drag

= profile drag

$$C_{D_p} = C_{D_{pressure}} + C_{D_{friction}}$$

Influence of the Reynolds number

Effect on C_D of shape and Re-no.

TUDelft

Pressure drag

TUDelft

Two objects with the same drag force $(Re_D=10^5)$

(b) BASIC CAR BODY WITH SHARP LATERAL EDGES (4,e)

(c) WITH SHARP-EDGED WINDSHIELD, "T" TAPERING

(d) DITTO WITH LONG TAPERING TAIL 4 e)

(e) REID (4)) STREAMLINE CAR SHAPE

(I) EXTREME STREAMLINE SHAPE TESTED BY AVA (1)

Artificial transition

Flow over a sphere

free transition Re = 15000 artificial transition Re = 30000

Artificial transition

Use in sports: example 1 :speed skating

Measured drag characteristics of different fabrics on a cylinder

Position of the strips

Gianni Romme

World records speed skating men 5000 m:

8.36.6	Jaap Eden	Hamar 1894	
6.34.96	J. Olav Koss	Hamar 1994	
6.30.62	Gianni Romme H'veen 1997*		
6.22.20	Gianni Romme Nagano 1998		
6.21.49 Gianni Romme Galgary 1998			
Current:			
6.03.32 Sven Kramer Galgary 2007			

* First on clap skates

Experimenting with aerodynamics

Case study :

Usain Bolt 100m men world record holder

Measured effect of strips on the total aerodynamic drag:

- strips on lower legs -3 to -11 %
- strips on the cap -2 to -6 %

Location	Berlin	
air density	1.20	kg/m^3
parameters	Bolt	
length	1.96	m
mass	86	kg
Cd*S-total	0.82	
Cd*S-legs	0.246	
distance	100	m
min	sec	
0	9.58	
V-average	10.44	m/s

$$P = C_d \cdot S \cdot \frac{1}{2} \cdot \rho \cdot V^3$$

TUDelft

First calculate the required power for the time of 9.58 s (V=10.44 m/s)

Location				
air density	1.20	kg/m^3		
parameters Bolt				
length	1.96	m		
mass	86	kg		
Cd*S-total	0.806			
Cd*S-legs	0.231	-6%		

$$V^{3} = P / C_{d} \cdot S \cdot \frac{1}{2} \cdot \rho$$
.
 $\int_{V_{av}} V_{av} = 10.479 \text{ m/s}$

Then calculate new V with reduced drag of legs

