Introduction to Aerospace Engineering

Lecture slides

Introduction Aerospace Engineering Flight Mechanics

Dr. ir. Mark Voskuijl 15-12-2012

3.&4

Horizontal flight performance

Flight mechanics

Hours 1 & 2 : Hours 3 & 4 : Hours 5 & 6 : Hours 7 & 8 : Hours 9 & 10: Introduction, general equations of motion Horizontal flight performance Climbing and descending flight Flight envelope Example questions and solutions

1. Summary previous lecture

- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Equations of motion

General equations of motion in symmetric flight (1)

Equations of motion

General equations of motion in symmetric flight (2)

$$\bar{F} = m\bar{a}$$
$$\Box V : T \cos \alpha_{\tau} - D - W \sin \gamma = m \frac{dV}{dt}$$
$$\bot V : L - W \cos \gamma + T \sin \alpha_{\tau} = mV \frac{d\gamma}{dt}$$

Propulsive force Typical analytical assumption – Jet

Thrust is assumed to be independent of airspeed

Propulsive force Typical analytical assumption – Propeller

 P_{a} is assumed to be constant and independent of airspeed

Propulsive force Analytical assumptions - summary

Jet: Thrust is (assumed) independent of airspeed

Propeller: Power available is (assumed) independent of airspeed

Summary previous lecture

- You should be able to derive the equations of motion for 2 dimensional flight
- The thrust of a jet aircraft can be assumed independent of airspeed
- The power available of a propeller aircraft can be assumed independent of airspeed
- The complete aircraft aerodynamics can be represented by 1 equation; the lift drag polar

$$\sum F_{I/V} : \frac{W}{g} \frac{dV}{dt} = T \cos \alpha_T - D - W \sin \gamma$$
$$\sum F_{\perp V} : \frac{W}{g} V \frac{d\gamma}{dt} = L - W \cos \gamma + T \sin \alpha_T$$

$$C_D = C_{D_0} + \frac{C_L^2}{\pi A e}$$

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Introduction Horizontal flight performance

- How fast can an aircraft fly?
- How slow can a given aircraft fly?
- At what speed should be flown to be able to fly as far as possible? (Interesting for airliners)
- At what speed should be flown to stay in the air as long as possible? (Search and rescue, military purposes)

Introduction What to learn?

Most important are the lecture sheets!!!

Background material: Introduction to Flight (Anderson) Par. 6.1 – 6.2 Par. 6.3 – 6.6 Par. 6.12 – 6.14

- 1. Summary previous lecture
- 2. Introduction
- **3.** Equations of motion horizontal steady symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Equations of motion

General equations of motion in symmetric flight (1)

Equations of motion

General equations of motion in symmetric flight (2)

$$\vec{F} = m\vec{a}$$

$$\exists V : T \cos \alpha_{\tau} - D - W \sin \gamma = m \frac{dV}{dt}$$

$$\pm V : L - W \cos \gamma + T \sin \alpha_{\tau} = mV \frac{d\gamma}{dt}$$

Flight Condition:

The aircraft is performing a **horizontal** (**straight**) and **steady** flight.

Assumption:

The thrust is assumed to be in the direction of flight ($\alpha_T = 0$).

Equations of motion definitions

- **Straight flight**: flight in which the centre of gravity of the aircraft travels along a straight line $(d\gamma/dt = 0)$
- Steady flight: Flight in which the forces and moments acting on the aircraft do not vary in time, neither in magnitude, nor in direction (dV/dt = 0)
- Horizontal flight: The aircraft remains at a constant altitude (γ = 0)
- Symmetric flight: flight in which both the angle of sideslip is zero and the plane of symmetry of the aircraft is perpendicular to the earth (β = 0 and the aircraft is not turning)

http://www.youtube.com/watch?v=TCUHQ -l6Qg B52 landing in crosswind

Equations of motion Horizontal, steady, symmetric flight

$$\vec{F} = m\vec{a} = 1 = 0 = 0$$

$$\exists V : T \cos \alpha_{\tau} - D - W \sin \gamma = m \frac{dV}{dt} = 0$$

$$= 1 = 0 \quad dt = 0$$

$$\bot V : L - W \cos \gamma + T \sin \alpha_{\tau} = mV \frac{d\gamma}{dt}$$

Note: Clearly this is the most simple form of the equations of motion

How do these forces (aerodynamic, propulsive, gravitational) vary with airspeed?

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight

4. Performance diagram

- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Performance diagram

- For a given altitude, configuration and engine control setting, the drag or power required and thrust or power available are plotted against airspeed
- Also called *Pernaud* diagram
- Very useful to determine aircraft performance parameters

Performance diagram

• Typical shape:

Performance diagram

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range
- 4. Endurance
- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Horizontal flight performance

- Minimum airspeed (How slow)
- Maximum airspeed (How fast)
- Range (How far)
- Endurance (How long)
- Speed stability / instability

Assumptions: Horizontal steady symmetric flight ($L = W, T = D, P_a = P_r$), except for the speed stability section

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Minimum airspeed

Minimum airspeed Flaps

Flight Mechanics 32

Minimum airspeed Performance diagram

Minimum airspeed Example calculation

• **Question**: An aircraft has a wing loading (W/S) 2400 N/m² and $C_{Lmax} = 1.4$. Find the airspeed at which stall occurs (minimum airspeed) at (i) sea level ($\rho = 1.225 \text{ kg/m}^3$) and (ii) at 5000m ($\rho = 0.737 \text{ kg/m}^3$)

Answer:

$$L = W$$

$$C_{L} \frac{1}{2} \rho V^{2}S = W$$

$$(i)V_{min} = \sqrt{2400} \frac{2}{1.225} \frac{1}{1.4} = 51.8 \text{ m/s}$$

$$V_{min} = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L,max}}}$$

$$(ii)V_{min} = \sqrt{2400} \frac{2}{0.737} \frac{1}{1.4} = 66.8 \text{ m/s}$$

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range
- 4. Endurance
- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

 Pilot applies maximum throttle (max. thrust or Power available)

TUDelft

Flight Mechanics 36

Solution

Maximum airspeed Example

The following data is known of the Cessna Citation II (subsonic jet)

Aircraft Weight : W = 60 kN, Wing area : S = 30 m², (Parabolic) Lift-Drag polar : $C_D = C_{Do} + kCL^2$; $C_{Do} = 0.022$, k = 0.047, $C_{Lmax} = 1.35$, Maximum Thrust at 0 m ISA :T0 = 12 kN. The aircraft is flying at an altitude of H = 0 m in the International Standard Atmosphere ($\rho_0 = 1.225 \text{ kg/m}^3$) Thrust is assumed to be independent of the airspeed

Calculate (1) the maximum airspeed of this aircraft when flying at H = 0 m and (2) the corresponding Mach number

Maximum airspeed Solution

Steady symmetric horizontal flight: L = W, T = D

 $L = C_L \frac{1}{2} \rho V^2 S, \quad D = C_D \frac{1}{2} \rho V^2 S$

Thrust must be at maximum to achieve Vmax Combining the above yields:

$$\begin{split} &\frac{C_{L}}{C_{D}} = \frac{W}{T} = \frac{60000}{12000} = 5 \rightarrow C_{D} = \frac{C_{L}}{5} \\ &\text{Lift drag polar:} \\ &C_{D} = C_{D_{0}} + k \cdot C_{L}^{2} \\ &C_{L}^{2} - \frac{C_{L}}{5k} - \frac{C_{D_{0}}}{k} = 0 \\ &C_{L}^{2} - \frac{C_{L}}{5 \cdot 0.047} - \frac{0.022}{0.047} = 0 \\ &C_{L} = 0.11 \\ &V_{max} = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L}}} = \sqrt{\frac{60000}{30} \frac{2}{1.225} \frac{1}{0.11}} = 172.1 \text{ m/s} \end{split}$$

Maximum Mach number?

$$M_{max} = \frac{V_{max}}{a}$$
$$a = \sqrt{\gamma RT} = \sqrt{1.4 \cdot 287.05 \cdot 288.15} = 340.3 \text{ m/s}$$
$$172.1$$

$$M_{max} = \frac{172.1}{340.3} = 0.5$$

Contents

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal steady symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range
- 4. Endurance
- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

- How can we fly as far as possible for a given amount of fuel?
- How can we fly a given distance with the minimum amount of fuel?

<u>Specific range</u> is defined as the ratio V/F, where F equals the fuel flow

Dimensional analysis:
$$\begin{bmatrix} V \\ F \end{bmatrix} = \frac{\begin{bmatrix} V \\ F \end{bmatrix}}{\begin{bmatrix} F \end{bmatrix}} = \frac{\begin{bmatrix} m/s \end{bmatrix}}{\begin{bmatrix} N/s \end{bmatrix}} = \begin{bmatrix} m/N \end{bmatrix}$$

Or, put in words, **specific range** is the **distance that can be flown for 1 Newton of fuel**. Clearly, this variable must be maximised

Range Maximum range propeller aircraft

$$F \square c_{P}P_{br} \Leftrightarrow F = c_{P}\frac{P_{a}}{\eta_{j}}$$

 $P_a = P_r$ (steady horizontal flight)

$$F = C_{P} \frac{P_{r}}{\eta_{j}} = C_{P} \frac{DV}{\eta_{j}}$$
$$\frac{V}{F} = \frac{\eta_{j}}{C_{P}} \frac{1}{D}$$

 $\eta_{\rm j}$ and $c_{\rm P}$ can be assumed to be constant as a function of airspeed (over the range of cruising speeds) for propeller aircraft

$$R_{\max} \Rightarrow \left(\frac{V}{F}\right)_{\max} \Rightarrow D_{\min} \Rightarrow \left(\frac{C_L}{C_D}\right)_{\max}$$

Range Maximum range propeller aircraft

Problem!

<u>Result:</u> Prop: maximum range at maximum C_1 / C_D

Dear pilot, could you please fly at C_L / C_D max?

We must give an airspeed to the pilot

Solution

 $C_D = C_{D_0} + \frac{C_L^2}{\pi A e}$

v = f(x)

Result:

TUDelft

Prop: maximum range at maximum C_L / C_D

$$C_{D} = f(C_{L}) \qquad \Leftrightarrow \qquad \\ \frac{d}{dC_{L}} \left(\frac{C_{L}}{C_{D}}\right) = 0 \qquad \Leftrightarrow \qquad$$

$$\frac{d}{dx}\left(\frac{g(x)}{h(x)}\right) = \frac{hg' - gh'}{h^2}$$

$$\frac{C_D \cdot 1 - C_L \cdot \frac{dC_D}{dC_L}}{C_D^2} = 0$$

$$\frac{dC_D}{dC_L} = \frac{C_D}{C_L}$$

$$\frac{2C_L}{\pi Ae} = \frac{C_{D_0} + \frac{C_L^2}{\pi Ae}}{C_L}$$

$$L = W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}}$$

Flight Mechanics 44

Range Example: Spirit of St. Louis

- Charles Lindbergh (1927)
- First solo, non stop flight across the Atlantic ocean

Performance diagram Spirit of St Louis

(ref: NASA)

Note:

The P_r curve shifts down when weight decreases. This means that Charles had to decrease airspeed during the flight

Contents

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range
 - 1. Propeller

2. Jet

- 4. Endurance
- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Range Jet aircraft

So, at what speed should the pilot fly to maximise specific range? $F \square c_T T$

Typically, c_T can be considered to be constant

$$T = D$$

$$F = c_T T = c_T D$$

$$V/F = \frac{V}{c_T D}$$

$$(V/F)_{max} \Rightarrow (V/D)_{max} \Rightarrow (D/V)_{min}$$

Range Jet aircraft

Performance diagram (jet)

Flight Mechanics 49

Problem!

<u>Result:</u> Jet: maximum range at maximum C_l / C_D^2

Dear pilot, could you please fly at C_L / C_D^2 max?

We must give an airspeed to the pilot

Solution

 $C_D = C_{D_0} + \frac{C_L^2}{\pi A e}$

Result:

Jet: maximum range at maximum C_L / C_D²

Flight Mechanics 51

How environmentally (un)friendly are aircraft?

• Example: Boeing 747:

- W = 3000 kN
- S = 510 m²
- b = 60 m
- h_{cr} = 11000 m
- M_{cr} = 0.85
- Estimated:
 - $C_{D0} = 0.02$; e = 0.85; $\eta_{tot} = 0.40$

How environmentally (un)friendly are aircraft really

$$C_{L} = \frac{W}{S} \frac{2}{\rho} \frac{1}{V^{2}} = 0.517$$

$$C_{D} = C_{D_{0}} + \frac{C_{L}^{2}}{\pi A e} = 0.0342$$

$$\frac{C_{L}}{C_{D}} = 15.1$$

$$D = \frac{C_{D}}{C_{L}} W = 198.4 \text{ kN}$$

$$P_{a} = P_{r} = DV = 49591 \text{ kJ/s}$$

How environmentally (un)friendly are aircraft really?

 $\eta_{tot} = \frac{P_a}{Q} = 0.40$ estimated (in the order of efficiency power plant)

$$F = \frac{g}{H} \frac{P_a}{\eta_{tot}} = 28.3 \text{ N/s}$$

H = 43000 kJ/kg $\rho_{fuel} = 0.8 \text{ kg/m}^3$

Fuel consumption: 12980 l/hr (in accordance with data manufacturer) Every hour 900 km is travelled and 12980 l of fuel is used: 69 m/l With 400 passengers: 27.7 pax km/l

Comparison to a car

- Car driving 1:15 and 4 passengers: 60 pax km/l
- Conclusion: consumption of car is half the consumption of a 747 despite the speed ratio 9:1
- In practice (seat occupation < 100%) consumption per passenger km is similar for car and aviation traffic

Contents

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range

4. Endurance

- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Endurance

- Endurance: **time duration** spent in flight
- Do not confuse endurance with range!
- Solution: maximum endurance for minimum fuel flow

• F_{min}

Endurance

Jet aircraft

 $C_{T} \equiv \frac{F}{T}$ $F = C_{T}T$ Horizontal steady flight T = D $F = C_{\tau}D$ Assumption: c_{τ} = constant $F_{\min} \Rightarrow D_{\min} \Rightarrow \left(\frac{C_{L}}{C_{D}}\right)$

Endurance

Propeller aircraft

$$C_{p} \equiv \frac{F}{P_{br}} \Leftrightarrow F = C_{p} \frac{P_{a}}{\eta_{j}}$$

$$P_{a} = P_{r} \text{ (steady horizontal flight)}$$

$$F = C_{p} \frac{P_{r}}{\eta_{j}} = C_{p} \frac{DV}{\eta_{j}}$$

$$F = C_{p} \frac{D}{\eta_{j}} \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L}}} =$$

$$F = \frac{C_{p}}{\eta_{j}} \frac{C_{D}}{C_{L}} W \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L}}} = \frac{C_{p}}{\eta_{j}} \sqrt{\frac{W^{3}}{S} \frac{2}{\rho} \frac{C_{D}^{2}}{C_{L}^{3}}}$$

$$n \text{ and } C_{p} \text{ can be assumed to be constant}$$

 $\eta_{\rm j}$ and $c_{\rm P}$ can be assumed to be constant as a function of airspeed (over the range of cruising speeds) for propeller aircraft

$$E_{\max} \Rightarrow F_{\min} \Rightarrow \left(\frac{C_L^3}{C_D^2}\right)_{\max} \Leftrightarrow \left(DV\right)_{\min} = P_{r,\min}$$

Endurance Propeller aircraft

P_r should be minimal!

Problem!

<u>Result:</u> Propeller: maximum endurance at maximum C_1^3 / C_D^2

Dear pilot, could you please fly at C_L^3 / C_D^2 max?

We must give an airspeed to the pilot

Solution

 $C_D = C_{D_0} + \frac{C_L^2}{\pi A e}$

Result:

Prop: maximum endurance at maximum C_L^3 / C_D^2

 $C_{D} = f(C_{L}) \qquad \Leftrightarrow \qquad y = f(x)$ $\frac{d}{dC_{L}} \left(\frac{C_{L}^{3}}{C_{D}^{2}}\right) = 0 \qquad \Leftrightarrow \qquad \frac{d}{dx} \left(\frac{g(x)}{h(x)}\right) = \frac{hg' - gh'}{h^{2}}$

Contents

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal symmetric flight
- 4. Performance diagram

5. Aircraft performance in horizontal flight

- 1. Minimum airspeed
- 2. Maximum airspeed
- 3. Range
- 4. Endurance
- 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Speed instability

• General equations of motion

$$\vec{F} = m\vec{a}$$

$$\exists V : T \cos \alpha_{\tau} - D - W \sin \gamma = m \frac{dV}{dt}$$

$$\perp V : L - W \cos \gamma + T \sin \alpha_{\tau} = mV \frac{d\gamma}{dt}$$

Equations of motion horizontal symmetric flight (thrust parallel to airspeed

$$\vec{F} = m\vec{a}$$
$$\exists V : T - D = m\frac{dV}{dt}$$
$$\perp V : L = W$$

Conclusion: the aircraft is 'speed unstable' and will deviate from the original position following a disturbance. This makes it difficult for the pilot

Conclusion: the aircraft is speed stable and the aircraft will automatically return to the original airspeed. Very nice for the pilot!

Speed stability - instability

Contents

- 1. Summary previous lecture
- 2. Introduction
- 3. Equations of motion horizontal symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Summary - Jet

TUDelft

Summary – Propeller Aircraft

TUDelft

Summary – Horizontal flight

$$L = W$$
$$T = D$$

Summary – Horizontal flight

$$L = W$$
$$T = D$$

Maximum endurance

Contents

- 1. Previous lecture Propeller simplification
- 2. Introduction
- 3. Equations of motion horizontal symmetric flight
- 4. Performance diagram
- 5. Aircraft performance in horizontal flight
 - 1. Minimum airspeed
 - 2. Maximum airspeed
 - 3. Range
 - 4. Endurance
 - 5. Speed instability / stability
- 6. Summary
- 7. Example exam question

Example exam question (homework) Problem

The Gulfstream IV, indicated in Figure 1 is a twin-turbofan executive transport aircraft. Data for this aircraft are given below:

S = 88.3 [m²]b = 23.7 [m] A = 6.36 [-] e = 0.67 [-] C_{D0} = 0.015 [-] C_D = C_{D0} + C_L² / πAe W = 311000 [N]

This aircraft has two *Rolls Royce Tay* turbofan engines. Fuel consumption can be represented with the following equation: $F = c_T T$, where $c_T = 0.69 [N/hr/N]$. The thrust specific fuel consumption is assumed to be independent of airspeed and altitude

Question:

What is the maximum specific range of this aircraft when flying at 8000m ($\rho = 0.5252$ kg/m³) ?

Example exam question (homework) Solution (part 1)

Specific range = V/F (m/kg) = V/c_TT

Steady horizontal flight: T = D; L = W V/F = V/c_TD

 c_T is a constant so maximum specific range when (D/V) is minimal

$$D = D \frac{L}{L} = \frac{C_D}{C_L} W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}}$$

$$\frac{D}{V} = \frac{C_D}{C_L} W \frac{1}{\sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}}} = \frac{W}{\sqrt{\frac{W}{S} \frac{2}{\rho} \frac{C_L}{C_D^2}}}$$

So C_L / C_D^2 should be maximal. This is the case when $C_L = \sqrt{(C_{D0}\pi Ae/3)}$ (you should derive this on the exam, see sheet 48)

$$C_{L} = \sqrt{\frac{1}{3} \cdot 0.015\pi \cdot 6.36 \cdot 0.67} = 0.26$$
$$C_{D} = C_{D_{0}} + \frac{C_{L}^{2}}{\pi Ae} = 0.015 + \frac{0.26^{2}}{\pi \cdot 6.36 \cdot 0.67} = 0.02$$

Example exam question (homework) Solution (part 2)

From the lift coefficient, we can calculate the airspeed

 $V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}} = \sqrt{\frac{311000}{88.3} \frac{2}{0.5252} \frac{1}{0.26}} = 227 \text{ [m/s]}$

The aerodynamic drag can be calculated with the drag coefficient. This must be equal to the thrust

 $T = D = \frac{C_D}{C_L} W = \frac{0.02}{0.26} 311000 = 23.9 \text{ [kN]}$

Now, all parameters are known to calculate the maximum specific range for this altitude and aircraft weight

 $\frac{V}{F} = \frac{V}{c_T T} = \frac{227}{(0.69/3600) \cdot 23900} = 50 \text{ [m/N]}$

