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“When this one feature [balance and control]
has been worked out,

the age of flying machines will have arrived, for all 
other difficulties are of minor importance.”

Papers of Wilbur and Orville Wright

Wilbur Orville
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“A spin is like a love affair; 
you don’t notice how you get into it 
and it is very hard to get out of”

Theodore von Kármán,

answering a question during a conference
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Stability is not easy
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1.
Controls
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Different approach pioneers

Europe: Voisin Farman I-bis at Brussels Air Museum
January 13, 1908: Grand Prix d’Aviation for circle > 1 km
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Different approach pioneers

Wright Flyer I in Smithsonian Air & Space Museum Washington DC
First powered manned flight
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Concept of Wing Warping
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Wing warping for roll control

• Fokker Spin

31 August 1911, Haarlem

1 September 1911, Haarlem
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First ailerons

Antoinette IV,1908 designed by Leon Lavasseur

• Monoplane

• Failed to cross 
channel on 19 
July 1909

• World distance 
record: 154.6 km 
on 26 Augustus 
1909 in 2 hr 17m
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Rudder

Elevator

Aileron L

Aileron R

Throttle



13AE112 Introduction to Aerospace Engineering |

“It is not immediately obvious how a pilot with four
controls manages to control an aircraft with six

degrees of freedom.”

D. Stinton
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Classic Flight

Control System (FCS) positive deflections
δT
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Classic FCS: F-15 Eagle
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Classic FCS: F-15 fly by cable
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Fly by wire FCS

First in military jets (agility) later in airliners (weight saving).
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Demo

Stable Flight

• Mode 1: Controls vertical speed 
• Mode 2: Controls vertical acceleration
• Mode 3: Control change of vertical acceleration
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Integrators in control loop
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2.
Angles and axes
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Body Axes

Y

X

Z

c.g.

Forces in body axes

Difference with lift & drag?

Defined relative to
direction of speed vector
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Control surfaces and rotations

Ailerons: roll angle φ

Elevator: pitch angle θ

Rudder: yaw angle ψ

Sign convention: negative deflections �
positive a/c response around its primary axis!

Top view

View from front

-δe

-δa,l
-δa,r

-δr
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Stability axes and body axes

horizon

Stability: xs-axis is attached to velocity
Body axes: xb-axis is fixed to aircraft

angle of attack 

climb angle

pitch angle θ

+ = θ

airspeed
aircraft
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Moments

c.g.L

M

N

L, M, N

Pitching moment 
Nose up = positive

M
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Stability axes and body axes

North

Stability: xs-axis is attached to velocity
Body axes: xb-axis is fixed to aircraft

Sideslip angle β

course χ

Heading ψ

Geodetic axes: xg-axis is attached to North and horizon

V (airspeed)
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Force & moment coefficients

• Forces dimensionless with  ½ ρV2 S

•Moments dimensionless with:

• Longitudinal M   M   M   M   : ½ ρV2 S c (c = chord)

• Lateral: L, N L, N L, N L, N : ½ ρV2 S b             (b = span)

•CX CY CZ Cllll Cm Cn
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For now: symmetrical movements

in stability axes
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Bank angle: Horizontal steady turn

Load factor n:
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Partial derivatives:

use for small disturbances

f(x,y)
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Partial derivatives:

use for small disturbances

f(x,y)

Cf

Cf

y

x
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Stability notation issue 

Cm = change in pitch moment due to angle of attack

Cn = change in yawing moment due to sideslip angle

Etc. etc.

β
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3.
Stability
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Static stability
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Dynamic stability

Harder to judge than static stability
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4.
Static stability

- Lateral examples

- Longitudinal
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Lateral stability: dihedral
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Lateral stability: wing sweep
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Tail configurations …. or no tail?
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Tail-Wing Configurations
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Longitudinal static stability
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We have a situation at the tail…

H Hiα α ε= − +

( ) 1H H
H

d d d
i

d d d

α α εα ε
α α α α

∆ = = − + = −
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Definition Aerodynamic center (subscript a.c.):

Point around which there is no change 

in moment due to a change in the angle 

of attack
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Wing alone is statically unstable
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Unfortunately wing with positive

camber not stable!
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Longitudinal static stability

Stable when two conditions are both met:

1. Cm0> 0   ;sufficiently positive zero lift moment    AND

2. Cmα < 0  ;negative change in moment due to angle of attack = same sign due to CL

This is the situation
we want

����



51AE112 Introduction to Aerospace Engineering |

First condition:

positive zero lift moment
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Static longitudinal stability
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≈ 0

=>
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For static stability:
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Stability and Cm :  neutral point

Factors for pitch stability:

• Position of tail surface
• Position of center of gravity

Meaning of neutral point?

Estimate neutral point: more or less than 0.4?
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Neutral point
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How about a canard?

Zero lift situation
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Tail vs. canard (foreplane)

Statically stable canard,
by moving c.g. forward

rel. to wing
Inherently stable tail config
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Stability margin
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Piaggio P180 Avanti
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Beechcraft Starship 2000
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5.
Dynamic stability

- typical modes oscillations of 

conventional aircraft
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Typical longitudinal oscillations

Langzame slingering (fugoïde)
Long period oscillation (phugoid)

Exchanging:
- Kinetic energy (speed)
- Potential Energy (altitude)

Modern airliners:
Low drag, low damping
(sometimes noticeable as passenger)

Period: 30 sec – several minutes

Snelle slingering
Short period pitching

Reaction on disturbance from balance

High damping

Period: 2 - 5 seconds
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Typical lateral oscillations

Zwierbeweging
Dutch roll
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Typical lateral modes

SpiralAperiodic rolling 
mode

high speed: stable

low speed:
may become unstable
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Vrille, spin = stalled

Flat spin 
(similar to steep spin)

Normal stall
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• Estimate for your aircraft in which range the center
of gravity would be from the planform

• For the following stability derivatives:
• The sign of the derivative: negative, zero (negligible) or positive
• Reason for the sign 
(contributing factors: change of lift of wing, position of surfaces etc)

• Contribution to static stability (or reduction)

Cl Cn Cl

• Judge the configuration of your aircraft and the position of the
control surfaces. Try to explain why this was chosen as it is from 
a static stability and/or control point of view.

Choose an aircraft…

r        p       β
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Example A300
General data:

• Wing area S = 260 m2

• Span b = 44.85 m
• Length 54.08 m
• Typical operating weight = 90,060 kg
• MTOW = 165,000 kg
• Distance wing ac to tail ac: lH=25,0 m

Engineering data:
• CL-alpha wing, awing = 4.4 1/rad (=0.076 per degree)
• CL-alpha tail, atail = 2.7 1/rad (= 0.047 per degree)
• Downwash at tail 1.0 degree per 10.0 deg alpha
• When c.g. 3.55 m after a.c of wing, it should still be stable

Question:
• What is minimum horizontal tail area?
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Example A300
General data:

• Wing area S = 260 m2

• Span b = 44.85 m

• Length 54.08 m

• Typical operating weight = 90,060 kg

• MTOW = 165,000 kg

• Distance wing ac to tail ac: lH=25,0 m

Engineering data:

• CL-alpha wing, awing = 4.4 1/rad

• CL-alpha tail, atail = 2.7 1/rad

• Downwash at tail 1.0 degree per 10.0 deg alpha

• When c.g. 3.55 m after a.c of wing, it should still be stable

Question:

• What is minimum horizontal tail area?

• SH=67 m2

1 withnp t H H
H H

l a S ld
V V

c a d S c

ε
α

⋅ = ⋅ ⋅ − =  ⋅ 

Other potential questions: what is ih?
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Homework Stability & Control

• Anderson problems:

7.1 - 7.6 & 7.9

• Notation is different:  h = 0.26 means xcg/c = 0.26
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