## Introduction to Aerospace Engineering

Lecture slides



## Boeing 727 cockpit



TUD ${ }^{\text {Th }}$

## Airbus A320




## A380 cockpit

Point \& Click device
Electronic Flight Bag


Check out: http://www.gillesvidal.com/blogpano/cockpit1.htm

## Classic GA cockpit:

 Cessna 172 Skyhawk

## Glass in GA aircraft: Diamond DA-42 Twin Star



TUDelft


## Modern fighter cockpits: HOTAS, MFDs \& HMD




F-16 Fighting Falcon

## 1.

## Instrumentation



'This instrument has a 10 feet accuracy'

## What's our speed? Which speed?



Primary Flight Display (PFD)

## Units for speed, altitude \& vertical speed

- Circumference earth is 40000 km

$$
\begin{aligned}
& \text { Note: } \\
& 1 \mathrm{~nm}=1852 \mathrm{~m} \\
& 1 \mathrm{mile}=1609 \mathrm{~m} \\
& 1 \mathrm{kts} \neq 1 \mathrm{mph} \\
& 1 \mathrm{kts}=1.15 \mathrm{mph}
\end{aligned}
$$

- $1 \mathrm{~nm}=1$ minute $=40000 / 360 / 60=1852 \mathrm{~m}$
- $1 \mathrm{kts}=1 \mathrm{~nm} / \mathrm{hr}=1852 \mathrm{~m} / 3600 \mathrm{~s}=0.51444 \ldots \mathrm{~m} / \mathrm{s}$
- $\mathrm{M}=\mathrm{V} / \mathrm{a} \quad$ with speed of sound $\mathrm{a}=\sqrt{\gamma R T} \quad$ For air: $\quad \gamma=1.40$
- $1 \mathrm{ft}=0.3048$
- $1 \mathrm{ft} / \mathrm{min}=0.3048 \mathrm{~m} / 60 \mathrm{~s}=0,00508$
E.g. $400 \mathrm{kts}=400 * 0.514444=206 \mathrm{~m} / \mathrm{s} ;=400 * 1.852=741 \mathrm{~km} / \mathrm{hr}$


## How do we measure speed?



Primary Flight Display (PFD)


## Airspeed: Pitot Tube



## Air data computer ADC Airspeed, VS and altitude



DADC

## Equivalent airspeed: no ISA required

- Equivalent airspeed is quickest way to get dynamic pressure

$$
1 / 2 \rho_{0} V_{E A S}^{2}=1 / 2 \rho V_{T A S}^{2}
$$

So:

$$
C_{L} 1 / 2 \rho_{0} V_{E A S}^{2} S=C_{L}^{1 / 2} \rho V_{T A S}^{2} S
$$

- If we assume no instrument errors and no compressibility effect (low Mach number), then EAS = CAS = IAS


## Static pressure, dynamic pressure, total pressure

- Speed from difference static \& total pressure
- Altitude from difference between static pressure and reference as set by pilot (QNH setting) based on definition in standard atmosphere
- $\mathrm{V} / \mathrm{S}$ as change in $p_{\text {st }}$

Use: $\quad p_{\text {tot }}=p_{s t}+p_{\text {dyn }}$

$$
=p_{s t}+1 / 2 \rho V^{2}
$$

And ISA with QNH setting


## What's our speed? Which speed?

- Ground speed: true airspeed + drift due tot wind

IAS = Indicated Airspeed
CAS = Callibrated airsp
EAS is often used in specifications because it specifies a certain dynamic pressure!
EAS $=$ Equivalent airspeed
TAS = True airspeed
GS = Ground speed
$\mathrm{M}=$ Mach number $=\mathrm{V}_{\text {TAS }} / \mathrm{a}$
$E A S=T A S \times \sqrt{\frac{\text { actual air density }}{\text { standard air density }}}$.


## Homework assignment

- Complete the following tables (Hint: use Excel or other program):

| altitude | TAS | EAS | Mach |
| ---: | :---: | :---: | :---: |
| $0(\mathrm{SL})$ | 250 kts |  |  |
| 3000 ft | 250 kts |  |  |
| $\mathrm{FL} 100 / 10000 \mathrm{ft}$ | 250 kts |  |  |
| $\mathrm{FL} 200 / 20000 \mathrm{ft}$ | 250 kts |  |  |
| $\mathrm{FL} 300 / 30000 \mathrm{ft}$ | 250 kts |  |  |
| $\mathrm{FL} 400 / 40000 \mathrm{ft}$ | 250 kts |  |  |


| altitude | TAS | EAS | Mach |
| ---: | :---: | :---: | :---: |
| $0(\mathrm{SL})$ |  | 365 kts |  |
| 3000 ft |  | 365 kts |  |
| $\mathrm{FL} 100 / 10000 \mathrm{ft}$ |  | 365 kts |  |
| $\mathrm{FL} 200 / 20000 \mathrm{ft}$ |  | 365 kts |  |
| $\mathrm{FL} 300 / 30000 \mathrm{ft}$ |  | 365 kts |  |
| $\mathrm{FL} 400 / 40000 \mathrm{ft}$ |  | 365 kts |  |
|  |  |  |  |
| altitude | TAS | EAS | Mach |
| $0(\mathrm{SL})$ |  |  | 0.92 |
| 3000 ft |  |  | 0.92 |
| $\mathrm{FL} 100 / 10000 \mathrm{ft}$ |  |  | 0.92 |
| $\mathrm{FL} 200 / 20000 \mathrm{ft}$ |  |  | 0.92 |
| $\mathrm{FL} 300 / 30000 \mathrm{ft}$ |  |  | 0.92 |
| $\mathrm{FL} 400 / 40000 \mathrm{ft}$ |  |  | 0.92 |

- Airbus gives the following maximum operating speeds (Vmo/Mmo):

A330: 360kias/M0.86
A340: 330kias/M0.86
What would this mean?

## Answer homework

| altitude | TAS | EAS | Mach | rho | T | a | h [m] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 (SL) | 250 | 250 | 0.38 | 1.225 | 288.15 | 340 | 0 |
| 3000 ft | 250 | 239 | 0.38 | 1.121 | 282.21 | 337 | 914 |
| 10000 ft | 250 | 215 | 0.39 | 0.9045 | 268.34 | 328 | 3048 |
| 20000 ft | 250 | 181 | 0.41 | 0.6452 | 247.88 | 316 | 6096 |
| 30000 ft | 250 | 153 | 0.42 | 0.458 | 228.71 | 303 | 9144 |
| 40000 ft | 250 | 124 | 0.44 | 0.3013 | 216.65 | 295 | 12192 |


| altitude | TAS | EAS | Mach | rho | T | a | h[m] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 (SL) | 365 | 365 | 0.55 | 1.225 | 288.15 | 340 | 0 |
| 3000 ft | 382 | 365 | 0.58 | 1.121 | 282.21 | 337 | 914 |
| FL100 / 10000 ft | 425 | 365 | 0.67 | 0.9045 | 268.34 | 328 | 3048 |
| FL200 / 20000 ft | 503 | 365 | 0.82 | 0.6452 | 247.88 | 316 | 6096 |
| FL100 / 30000 ft | 597 | 365 | 1.01 | 0.458 | 228.71 | 303 | 9144 |
| FL100 / 40000 ft | 736 | 365 | 1.28 | 0.3013 | 216.65 | 295 | 12192 |


| altitude | TAS | EAS | Mach | rho | T | a | h[m] |
| ---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0} \mathbf{( S L )}$ | 609 | 609 | $\mathbf{0 . 9 2}$ | 1.225 | 288.15 | 340 | 0 |
| $\mathbf{3 0 0 0} \mathbf{f t}$ | 602 | 576 | $\mathbf{0 . 9 2}$ | 1.121 | 282.21 | 337 | 914 |
| FL100/10000 ft | 587 | 505 | $\mathbf{0 . 9 2}$ | 0.9045 | 268.34 | 328 | 3048 |
| FL200/20000 ft | 564 | 410 | $\mathbf{0 . 9 2}$ | 0.6452 | 247.88 | 316 | 6096 |
| FL100/30000 ft | 542 | 331 | $\mathbf{0 . 9 2}$ | 0.458 | 228.71 | 303 | 9144 |
| FL100/40000 ft | 528 | 262 | $\mathbf{0 . 9 2}$ | 0.3013 | 216.65 | 295 | 12192 |

At low altitude the IAS is limiting at high altitude the Mach number As a result the speed margin between minimum and maximum speeds will become less

## Altitude

- Pressure altitude is not real altitude
- Adjust for pressure at sea level: QNH
- Above transition altitude: 4500 ft -> FL045
 Assume at sea level: $1013,25 \mathrm{mbar}(=29,92$ inch Hg$)$

- Flight levels are used above a so-called 'transition altitude'
- Flight levels use a 100 ft unit
- FL085 means 8500 ft above the 1013.25 hPa pressure



## Altitude

- Pressure altitude is not real altitude
- Adjust for pressure at sea level: QNH
- Above transition altitude: $4500 \mathrm{ft}->$ FL045 (relative to $\mathrm{p}_{0}=1013,25 \mathrm{hPa}=1 \mathrm{~atm}$ )



## Altitude

- Pressure altitude is not real altitude
- Adjust for pressure at sea level: QNH
- Above transition altitude: $4500 \mathrm{ft}->$ FL045
(relative to $\mathrm{p}_{0}=1013,25 \mathrm{hPa}=1 \mathrm{~atm}$ )

|  | $\begin{gathered} \text { QNH } \\ \text { (in millibars) } \end{gathered}$ | Transition altitude (in feet) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3,000 | 4,000 | 5,000 | 6,000 | 18,000 |
|  | 1032-1050 | FL25 | FL35 | FL45 | FL55 | FL175 |
|  | 1014-1032 | FL30 | FL40 | FL50 | FL60 | FL180 |
|  | 996-1013 | FL35 | FL45 | FL55 | FL65 | FL185 |
| altimeter s $\epsilon$ | 978-995 | FL40 | FL50 | FL60 | FL70 | FL190 |
| QNH = 103 | 960-977 | FL45 | FL55 | FL65 | FL75 | FL195 |
|  | 943-959 | FL50 | FL60 | FL70 | FL80 | FL200 |




