Introduction to Aerospace Engineering

Lecture slides

Introduction to Aerospace Engineering AE1101ab - Propulsion

Prof.dr.ir. Jacco Hoekstra

11

Propulsion

We do not use Anderson's ch 9 (too difficult for now), but these slides for 1101ab

AE1101 Introduction to Aerospace Engineering 3 | xx

The propulsion perspective...

Gee Bee model 'R' Sportster

AE1101 Introduction to Aerospace Engineering 4 | xx

Wright Flyer required an engine that did not exist

- Engine: Wright 4-cylinder 12 20 hp water-cooled inline
- Weight 150 lbs, 200 lbs with fuel

AE1101 Introduction to Aerospace Engineering 5 |

5 | xx

"Even considering the improvements possible the gas turbine could hardly be considered a feasible application to airplanes, mainly because of the difficulty with the stringent weight requirements." *Gas turbine committee, US National Academy of Sciences (1940)*

Same statement is currently often heard for electrical propulsion!

AE1101 Introduction to Aerospace Engineering 6 | xx

aircraft- and rocket propulsion = reaction propulsion

AE1101 Introduction to Aerospace Engineering 7

7 | xx

You can see this principle in the water rocket. nose cone thrust compressed air plastic soda bottle 🕳 waterweight air friction fins nozzle expelled water 特大ペットボトル15本を発射台に装着/ **T**UDelft 8 | XX gineering

Theory of air breathing engines V_0 (m/s) V_{J} $\dot{m}[kg/s]$

For rocket propulsion we use Tsjolkovski's rocket equation (covered 1101cd)!

AE1101 Introduction to Aerospace Engineering 9 | xx

Theory Momentum Equation:

$$I = m \cdot V$$

$$F = \frac{dI}{dt}$$

(En: linear momentum, NL: impuls)

(Newton's second law) [kg m/s²](=N)

$$\rightarrow F = m \cdot \frac{dV}{dt} = m \cdot a$$

$$\rightarrow T = \dot{m}(V_j - V_0)$$

What Flew or Is Flying Around?

Propeller Propulsion

Jet Propulsion

AE1101 Introduction to Aerospace Engineering 11 | xx

Propeller Propulsion

AE1101 Introduction to Aerospace Engineering 12 | xx

AE1101 Introduction to Aerospace Engineering 13 | XX

Twisted for constant angle of attack

AE1101 Introduction to Aerospace Engineering 16 | xx

Available Power for thrust

Work Performed: $W = T \cdot \Delta s$ [Nm or J] Available Power: $P_a = \frac{T \cdot \Delta s}{\Delta t} = T \cdot V$ [Nm/s, J/s or W]

TUDelft

AE1101 Introduction to Aerospace Engineering 17 | xx

Speed is V

Net available Power for thrust: $P_a = T V$

Brake (shaft) Power: P_{br}

Propulsive Efficiency:

$$\eta = \frac{P_a}{P_{br}} = \frac{TV}{P_{br}}$$

AE1101 Introduction to Aerospace Engineering

18 | XX

Airbreathing Engines

They all work the same way.....in principle Only the details differ.

They all have 4 stages:

- 1. Intake
- 2. Compression
- 3. Work
- 4. Exhaust

Piston Engines

What is used in Aviation ?

- 2 Stroke Engine
- 4 Stroke Engine
- Wankel Engine
- Diesel Engine

Obsolete Common 'New' Expected

Combustion Cycle (Otto Cycle)

TUDelft

AE1101 Introduction to Aerospace Engineering 21 | xx

AE1101 Introduction to Aerospace Engineering 22 | XX

Working Cycle (4 stroke engine) NTAKE COMPRESSION WORK

р pressure P Work [J] (3) 5 (1) volume V V

TUDelft

EXHAUST

Throttle control

CONCENTRIC FLOAT AND VALVE

ECCENTRIC FLOAT AND VALVE

AE1101 Introduction to Aerospace Engineering 24 | xx

Piston Engines: In-Line

AE1101 Introduction to Aerospace Engineering 25 | xx

Piston Engines: Boxer

AE1101 Introduction to Aerospace Engineering 26 | xx

Piston Engines

AE1101 Introduction to Aerospace Engineering 27 | xx

AE1101 Introduction to Aerospace Engineering 29 **xx**

AE1101 Introduction to Aerospace Engineering 30 **XX**

AE1101 Introduction to Aerospace Engineering 31 | xx

AE1101 Introduction to Aerospace Engineering 32 | xx

AE1101 Introduction to Aerospace Engineering 33 | XX

Trading Exhaust Power for Shaft PowerNTAKECOMPRESSIONWORKEXHAUST

AE1101 Introduction to Aerospace Engineering 34 | xx

TurboProp/TurboShaft

AE1101 Introduction to Aerospace Engineering 36 | xx

Turboshaft

AE1101 Introduction to Aerospace Engineering 37 | xx

TurboFan Outer Secondary Duct fan nozzle air stream Fuel Turbine Hot Injector gases Inlet Combustion Compressor Nozzle chamber Primary air stream

AE1101 Introduction to Aerospace Engineering 39 | xx

This is quite a large duct fan (high bypass flow) Why?

AE1101 Introduction to Aerospace Engineering 40 | xx

Engine development 1950-1980

41 | xx AE1101 Introduction to Aerospace Engineering

Jet efficiency

What is efficiency of jet?

$$P_{j} = \frac{1}{2}\dot{m}\left(V_{j}^{2} - V_{0}^{2}\right) \qquad T = \dot{m}(V_{j} - V_{0}) \qquad P_{a} = T V_{0}$$

Jet efficiency

$$\eta_{j} = \frac{P_{a}}{P_{j}} = \frac{TV_{0}}{\frac{1}{2}\dot{m}\left(V_{j}^{2} - V_{0}^{2}\right)} = \frac{\dot{m}\left(V_{j} - V_{0}\right)V_{0}}{\frac{1}{2}\dot{m}\left(V_{j} + V_{0}\right)\left(V_{j} - V_{0}\right)}$$

 $\eta_j = \frac{2}{1 + \frac{V_j}{V_0}}$

What is effect on engines of previous slide?

AE1101 Introduction to Aerospace Engineering 42 | xx

Example of this effect

Effect of bypass ratio:				
VO	250	kts	128.61	m/s
	Vjet		Jet efficiency	
No bypass	700	m/s	?	
Bypass 2-shaft	500	m/s	?	
Turbofan 2/3 shaft	350	m/s	?	

	Vjet		n jet
No bypass	700	m/s	0.310423
Bypass 2-shaft	500	m/s	0.409189
Turbofan 2/3 shaft	350	m/s	0.537431

In words: by lowering exhaust speed, the efficiency goes from 31% to 54% (amount of energy used for propulsion)

And also less noise due to lower V_i

TUDelft

AE1101 Introduction to Aerospace Engineering 44 | xx

Engine Development

Very big

AE1101 Introduction to Aerospace Engineering

45 XX

Deltt

Engine Applications

• Single engine training aircraft:

- Piston engine
- Low subsonic passenger aircraft:
 - <u>Turboprop</u>
- Concorde (Supersonic):
 - Pure (straight) jet
- Helicopter:
 - <u>Turboshaft or piston</u>

Two or Four Engines? ETOPS

- Extended Twin OPerationS
 - Engines Turning Or Passengers Swimming
- Twin engined airliners restricted to a maximum diversion time (120 to 207 minutes) dependent on strict maintenance and aircraft type.
- Crossing some parts of the atlantic and pacific ocean and both poles is (currently) restricted to four engined airliners.

Future air breathing Engines

- Pratt & Whitney PW127B
 - Turboprop
 - Aircraft:
 - Power:

- Fokker 50
- 2750 SHP (x2) 2050 kW (x2)

• Rolls Royce - Tay 650

- Low bypass Turbofan
- Aircraft: Fokker 100
- Thrust: 67 kN (x2)
- Fan Diameter: 1.14 m
- Length: 2.4 m
- Bypass Ratio: 3.07

- General Electric GE90-115B
 - High bypass turbofan
 - Aircraft:

Boeing 777

- Thrust:
- Fan Diameter:
- Length:
- Bypass Ratio:
- 512 kN (x2) 2.95 m
- 4.55 m

Largest and highest thrust engine in the world!

9

• Rolls Royce – Trent 900

- High bypass turbofan
- Aircraft: Airbus 380
- Thrust: 311 kN (x4)
- Fan Diameter: 2.95 m
- Length: 4.55 m
- Bypass Ratio: 8.5

- Rolls Royce / Snecma Olympus 593
 - Pure Turbojet
 - Aircraft:
 - Thrust:

Concorde 170 kN* (x4)

*Using afterburner (take-off and transonic)

Links

- www.howstuffworks.com
- www.rollsroyce.com
- www.ge.com

Beechcraft Super King Air 200

AE1101 Introduction to Aerospace Engineering 55 | xx

Pratt & Whitney PT6A-41

- Per engine: 850 Shaft horse power, P_{br}=634 kW
- Maximum speed at sea level:

