Introduction to Aerospace Engineering

Lecture slides

Intro to Aerospace Engineering AE1101ab Special vehicles/future

Prof.dr.ir. Jacco Hoekstra

Principles of flight?

Three ways to fly...

TUDelft

Overview of aircraft types

- Ways to fly
 - Being lighter than air
 - Balloons 1
 - Airships 🗸
 - Pushing air downwards
 - Airplanes V
 - Ground effect planes
 - Helicopters
 - Other VTOL/STOVL
 - Pushing something else downwards
 - Rockets
 - Jet pack???
- Future aircraft
 - Future UAVs
 - Personal Air Vehicles
 - Hypersonic planes
 - Micro Aerial Vehicles
 - Clean era aircraft/'Green aircraft'

AE1101ab Introduction to Aerospace Engineering

1.

Ground effect aircraft

AE1101ab Introduction to Aerospace Engineering

4 |

Ground effect aircraft use "cushion of air"

 Hovercraft is not ground effect aircraft, but also uses cushion of air

AE1101ab Introduction to Aerospace Engineering

What is the "ground effect"?

- No vertical speed at ground level
- As if mirrored aircraft generates lift with its inverted downwash
- Increase in lift can be up to 40%!

AE1101ab Introduction to Aerospace Engineering

What is the "ground effect"?

 Reduction of induced drag: 10% at half the wingspan above the ground

TUDelft

AE1101ab Introduction to Aerospace Engineering

7 |

Is it a boat? Is it a plane? No, it's the Caspian Sea Monster!

Lun-class KM Ekranoplan

Operator: Russian navy In service: 1987-1996? Nr built: 1 (MD-160) Length: 100 m Wing span: 44 m Speed: 297 kts (550 km/h) Range: 1000 nm (1852 km) Empty weight: 286,000 kg Max TOW: 550,000 kg Thrust: 8 x 127,4 kN Crew: 6 Armament:

- 6 missile launchers for ASW
- 23 mm twin AA-gun

 Russian KM-Ekranoplan a.k.a.
"The Caspian Sea Monster" Built in 1966

Serious video

Cool video

A-90 Orlyonok: Troops transport (5 ex.)

AE1101ab Introduction to Aerospace Engineering

Current fate of these vehicles

• You can still find them on Google Earth! Check ports of Caspian Sea.

AE1101ab Introduction to Aerospace Engineering 11 |

Future for ground effect aircraft?

AE1101ab Introduction to Aerospace Engineering 1.

Future for ground effect aircraft?

Future for ground effect aircraft? GEV = Ground Effect Vehicle

AE1101ab Introduction to Aerospace Engineering 15 |

Future for ground effect aircraft?

AE1101ab Introduction to Aerospace Engineering

2.

Helicopters

AE1101ab Introduction to Aerospace Engineering 18

Helicopters

Remember, a helicopter is nothing more than a large collection of parts flying in close formation, held together with grease and copper wire

Helicopters are:

- Creating more noise (internal & external)
- Less fuel efficient
- Less environmentally friendly
- More expensive to buy & operate
- Less comfortable for passengers
- Harder to fly

But can:

- Land & take-off anywhere
- Hover

Helicopters in service since 1940s

VS-300

Igor Sikorsky (1889 - 1972) builds first helicopter in 1909 but it was more than 25 years before early practical machines - like the VS-300 (pictured) were flown in prewar trials.

Sikorsky R-4 Hoverfly 1944

Bolkow BO-105C

AE1101ab Introduction to Aerospace Engineering

21 |

Horizontal flight

(a) equilibrium of forces

(a) main rotor power in level flight

Helicopter flight control

An oft-quoted analogy is that flying an airplane is like riding a bicycle, but hovering a helicopter is like riding a unicycle.

AE1101ab Introduction to Aerospace Engineering 25

Helicopters are hard to fly

The story: Man buys helicopter. Man needs lessons. Man wants to try. Now.

Helicopter control: swash plate

Invented by Boris Yuryev in 1910 Russian aerodynamicist

Swashplate on a radio-controlled helicopter

- 1 Non-rotating outer ring (blue)
- 2 Turning inner ring (silver)
- 3 Ball joint
- 4 Control (pitch) preventing turning of outer ring
- 5 Control (roll)
- 6 Linkages (silver) to the rotor blade
- # Linkages (black) that make the inner ring turn

Cyclic:

- Roll & pitch control
- Tilt swash plate

Collective:

- changes angle of attack of all rotor blades
- move entire swash playe up& down

Horizontal flight

(b) rotor blade velocity distribution

Tail rotor compensates torque

AE1101ab Introduction to Aerospace Engineering 2

29

So what to do when tail rotor fails?

AE1101ab Introduction to Aerospace Engineering

So what to do when tail rotor fails?

AE1101ab Introduction to Aerospace Engineering

Alternatives for tail rotor

NOTAR SYSTEM

AE1101ab Introduction to Aerospace Engineering 32 |

McDonnell Douglas Explorer

AE1101ab Introduction to Aerospace Engineering 3

33 |

Kamow Ka-50

AE1101ab Introduction to Aerospace Engineering

Answer: Autorotation Same for an engine failure

Dead man's region

AE1101ab Introduction to Aerospace Engineering

V-22 Osprey: Tilt-rotor aircraft

AE1101ab Introduction to Aerospace Engineering

STOVL/VTOL

AE1101ab Introduction to Aerospace Engineering 41 |

BAe Sea Harrier

AE1101ab Introduction to Aerospace Engineering

TUDelft

AE1101ab Introduction to Aerospace Engineering 4

Follow-up: McDonnel Douglas AV-8B

AE1101ab Introduction to Aerospace Engineering 44

NG-Harrier: STOVL JSF F-35B

786 JS7 (කිය of

AE1101ab Introduction to Aerospace Engineering 45 |

Rockets for lift on aircraft?

AE1101ab Introduction to Aerospace Engineering

Boeing B-47B, rocket assisted take off, April 15, 1954

JATO rockets Jet Assisted Take-Off

often used during the 1940s-1960s to boost heavily-laden aircraft off the ground

Jet pack or rocket belt

Technical characteristics of rocket pack								
	Bell Rocket Belt	RB 2000 Rocket Belt						
Duration	21 s	30 s						
Thrust	136 kgf (1.33 kN) (calculated 127 kgf or 1.25 kN)	145 kgf (1.42 kN)						
Maximum distance	approximately 250 meters							
Maximum altitude	18 m	30 m						
Maximum speed	55 km/h	96 km/h						
Equipped mass	57 kg	60 kg						
Fuel stock	19 liters	23 liters						

Risk of unstability:

- Check moments
- Where is thrust applied?

Jet pack

Jet P.I. Equipment weight ~ 70 kg

Name	Max flight time	Max distance	Max speed	Max height	Max pilot weight	Fuel	Motor type	Fuel capacity	Price
Jet pack H202	33 seconds	500 ft	70 mph	120ft	180 lbs	H ₂ O ₂	rocket	5.8 gallons	Not for sale
Jet pack H202-Z	43 seconds	1500 ft	77 mph	250ft	180 lbs	H ₂ O ₂	rocket	8 gallons	Not for sale
Jet pack T-73	@ 9 minutes	@ c. 11 miles	@ 83 mph	@ 250ft	180 lbs.	Jet-A fuel	T-73 jet motor	5 gallons	\$200,000 incl. training

A Jet Pack H202 was flown for 34 seconds in Central Park on the 9 April 2007 episode of the Today Show, and sold for \$150,000. But http://www.jetpackinternational.com/equip.html 🗗 says (as at 1 January 2009) that their H202 jetpacks are for demonstration only, not for sale.

AE1101ab Introduction to Aerospace Engineering 49 |

Future aircraft: Unmanned Aerial Vehicle (UAV)

AE1101ab Introduction to Aerospace Engineering

UAVs

- Original goal: One man controlling multiple aircraft
- Current situation: 4 man controlling one UAV
- UAVs crash 100 times more often than controlled a/c
- Situation is improving by using more automation
- Strictly speaking: an R/C toy airplane is a UAV
- But UAVs are no toys

- Surveillance UAV
- Records:
 - altitude 65,380 ft March 21, 2001
 - Endurance 30 hr 24 min 1 March 21, 2001
 - First UAV crossing pacific: 8214 nm in 22 hours April 24, 2001

AE1101ab Introduction to Aerospace Engineering 53 |

Global Hawk is not a toy

Future: UCAV?

AE1101ab Introduction to Aerospace Engineering 55 |

Remaining issues

- Reliability, responsibility
- Less controllers per vehicle
- Acceptance:
 - In civil airspace
 - For civil operations: cargo?

Passengers?

"Ladies & gentlemen, this aircraft is completely controlled by robots. So nothing can go wrong, nothing can go wrong, nothing can go wrong, nothing can go wrong, nothing...."

Future aircraft: Personal Air Vehicle (PAV)

AE1101ab Introduction to Aerospace Engineering 57 |

Henry Ford (July 30, 1863 – April 7, 1947)

"Mark my word – a combination of airplane and motor car is coming. You may smile, but it will come."

Steps 1 and 2 are a reality. Step 3 is in progress!

Mass production: price equals car...

Which one would you choose?

- Speed: 120 km/h
- Mileage: 1 op 8,5 km
- 5 persons
- Only drive
- Plenty of space

- Speed: 500 km/h
- Mileage: 1 op 8,5 km
- 4 persons
- Vertical take-off
- Flying no traffic jam

AE1101ab Introduction to Aerospace Engineering

Dutch initiative: PAL-V

Gyrocopter and motorcyle hybrid

By designer of Carver

Proven concept:

AE1101ab Introduction to Aerospace Engineering

Hybrids: Who solves it will be rich....

AE1101ab Introduction to Aerospace Engineering

Hypersonic planes

AE1101ab Introduction to Aerospace Engineering

63 |

Hypersonic plane to reach Australia in under 5 hours & eco friendly(?)

- ESA funded project: A-2
- Current problem: How to capture NO_x output (Air burns at high temperatures, creating NO_x)
- Astrox: in two hours to other side of the world

AE1101ab Introduction to Aerospace Engineering 64 |

MAV: Micro Aerial Vehicle

AE1101ab Introduction to Aerospace Engineering

65 |

Delfly & Delfly nano

• Check out our MAVlab

AE1101ab Introduction to Aerospace Engineering

Future aircraft: Green Aircraft

AE1101ab Introduction to Aerospace Engineering

Why Cleanera is necessary.

AE1101ab Introduction to Aerospace Engineering

Energy transitions

AE1101ab Introduction to Aerospace Engineering

Growth is our only real problem...

Clean Era

AE1101ab Introduction to Aerospace Engineering 7

Em. professor Bartlett, Colorado University, Boulder

Topics addressed:

- population growth
- energy consumption
- how it all will end

Eternal & exponential growth is impossible

Situation is more urgent than you Will intuitively think it is.

http://www.youtube.com/watch?v=F-QA2rkpBSY

Clean Era

AE1101ab Introduction to Aerospace Engineering 7

71 |
Other youtube tip: Home by Yann Arthus-Bertrand

Entire movie, made in 2008, on Youtube in HD with Eng subtitles: <u>http://www.youtube.com/watch?v=jqxENMKaeCU</u>

AE1101ab Introduction to Aerospace Engineering

72 |

The Green Aircraft

Focus on technologies 1ab Introduction to Aerospace Engineering 7

73 |

ean**⊑**ra

AE1101ab Introduction to Aerospace Engineering

74

Ambition: *Flying Nuna/Formula Zero* Demonstrator of technologies

AE1101ab Introduction to Aerospace Engineering 75 |

The future?

Future clean energy sources:

- Nuclear fusion
- Photovoltaic
- Wind energy....

