Introduction to Aerospace Engineering

Lecture slides

Part of the contents of this presentation originates from the lecture "Space Engineering and Technology I, Part I" (ae1-801/1), by R. Hamann.

TUDelft

AE1102 Introduction to Aerospace Engineering (Space)

15

What is Space? (Cnt'd)

Thermal Environment

- Extremely hot and cold
- Without special measures material temperatures may vary between -270 and +120 C (near Earth)
- Solar flux at Earth surface 400 to 600 W/m² (depending on cloud cover, latitude and time of day), in space 1400 W/m²
- Earth surface temperature ~293 K
- Deep space temperature 4 K
- No convection (because no air and no gravity) but...
 - Radiation (internally and to environment) and
 - Conduction (internally)

TUDelft

AE1102 Introduction to Aerospace Engineering (Space)

24

GENERAL NOTE:

All expressions can also be used INVERSELY !!!

Example:

If the orbital period T, the Earth radius Re and the height of the orbit h_{orbit} are given, you can calculate the velocity of the S/C using the formula for the orbital period.

Assume T = 90 minutes, Re = 6378 km and $h_{orbit} = 275$ km

Compute V_{orbit}

Answer: 7.74 km/s

N.B. Always be careful with the "units". Make sure you are always consistent. So don't mix up km and m, or min, hrs and seconds

Answers:

 $g_0 = 9.80 \text{ m/s2}$ $V_{envisat} = 7.4519 \text{ km/s}$ $V_{moon} = 1.0118 \text{ km/s}$ $H_{geo-sat} = 35785 \text{ km}$

Answer: The velocity equals time times acceleration, giving ~ 0.4 m/s

