Introduction to Aerospace Engineering

Lecture slides

Introduction to Aerospace Engineering AE1101

Dept. Space Engineering
Astrodynamics \& Space Missions (AS)

- Prof. ir. B.A.C. Ambrosius
- Ir. R. Noomen

Space Systems Engineering (SSE)

- Ir. J.M. Kuiper
- Ir. B.T.C. Zandbergen

Part of the contents of this presentation originates from the lecture "Space Engineering and Technology I, Part I" (ae1-801/1), by R. Hamann.

Session 15-16

Learning goals
The student is able to

- ... describe
- What a spacecraft is
- important spacecraft characteristics including mass, electrical power, size, life, pointing control and orbit determination accuracy, data rate, data storage capability, cost
- ... describe and explain important configuration drivers
- ... calculate first order estimate of spacecraft mass, volume, electrical power and cost based on payload mass, size and electrical power

Many spacecraft exist.

What is a spacecraft?

Slide shows TDRSS satellite.

To be discussed:
GEO
Antennas point to Earth
Communication requires high power
Long life
Photovoltaics used. Need to be pointed to the Sun

Nimbus spacecraft on slide.

A spacecraft platform or "bus" is the service module section of a satellite.

Example of spacecraft technical data

Dimensions
$1.5 \times 1.8 \times 1.4 \mathrm{~m}$
Mass at launch overall ca. 1160 Kg
of which Beagle
71 kg
Fuel 470 Kg
Payload 116 Kg

Propulsion:

- Thrust of the main engine: 400 N
e 8 manoeuvring thrusters with 10 N thrust each

Power Supply:
© Solar Panels, Area $11.4 \mathrm{~m}^{2}$, output 660 W
© 3 Lithium-Ion Batteries with 22.5 Ah each

Consumption of power:

- Observational phase: 270 W

क Manoeuvring phase: 310 W

- Data transfer phase: 445 W.
- Launcher: Soyuz/Fregat
- Launch Site: Baikonour/Kazakhstan.

क Launch Date: May/June 2003.

Spacecraft technical data cont'd

Function/characteristics	Capability (values are illustrative only)
Pointing Control	0.2°
Orbit determination accuracy	Within 100 m
Electrical Power	500 W
Design life	5 Years
Data memory storage	1.25 Gigabits
Downlink Data Rate	2 Mbit/sec
Mass available for P/L	200 kg

Example

S/C technical data - Pointing Control (2)

Pointing Control	0.2°

This parameter is part of the Attitude Determination Control (ADC) S/C subsystem specification.

Example
The ADC accuracy of the S / C is within the angular cone $<0.2^{0}$

1) What is meant by 0.2 degree pointing control?

Mind that $1^{\circ}=3600^{\prime \prime}=60^{\prime}$
2) What does this mean for the ground station and a satellite at 36000 km altitude?

Question-1
0.2 degree $=720^{\prime \prime}=12^{\prime}$

The answer is usually given in (degree) seconds so 720 (degree) seconds maximum long term pointing accuracy a
Question-2
$\mathrm{pi} / 180 \times 0.2 \times 36000 \mathrm{~km}=125.6 \mathrm{~km}$ maximum deviation
This seems to be much, but only in case of laser communication \rightarrow When considering RF Electro-Magnetic waves radiated by a High Gain S/C antenna the wavefront is broad enough to cover this spread.

S/C technical data - Pointing Control (2)

Orbit determination accuracy	Within 100 m

This is part of the Orbit Control System (OCS) specification.
The combination of ADC \& OCS is mentioned:
AOCS = Attitude \& Orbit Control System

1) What is meant by an orbit determination accuracy of a satellite at 36000 km altitude within 100 meter in terms of
a) Relative maximum radial deviation?
b) Relative maximum tangential deviation?

Question-1
a) $\Delta \mathrm{h}[\mathrm{km}] /(\mathrm{R}+\mathrm{h})=0.1 /(6371+36000)=2.36 \times 10 \mathrm{E}-6$
b) $2 \pi . \Delta \mathrm{h} /(\mathrm{R}+\mathrm{h})=1.48 \mathrm{E}-5$

Question-1
This means that there is a solid state device in the S/C (taperecorders were used in the past) which supports the data storage of about
$1.25 \mathrm{E} 9 / 2 \mathrm{E} 6=1250 / 2=625$ seconds downlink time

Question-2
$2 \times 36000 / 300,000=240 \mathrm{msec}$ (minimum)
This real value will be longer for an arbitrary location of the ground station.
The same holds taking different locations of the transmitting and receiving station on Earth.

Question-3
Average estimate $2 \times 384.000 / 300,000=2.56$ seconds !
No communication possible during eclipse
(Houston we've got a problem...)

Important spacecraft design aspects

For each spacecraft, the following aspects are key
Orbit

- determines distance to subject
- with increasing distance less detail can be viewed and
- more power is needed to communicate
- determines the spacecraft environment

Launcher performance

- limits the spacecraft mass

Payload characteristics and mission aspects

- determine the size of the spacecraft and the need for mechanisms

Electrical power

- determines the size of the power source

Mission duration in relation to reliability

- determines the amount of spare resources needed (propellant, over-sizing for degradation due to radiation and ageing, redundancy)

Important aspects cont'd

Attitude and orbit accuracy

- determines the quality of the scientific data, the quality of communications and the safety of the spacecraft

On-board computer power and data storage

- determines autonomy and amount of data to be down linked

Up- and Down-link data rate

- determines the size of antennae, receiver and transmitter power

Manoeuvres to be performed

- determines amount of 'fuel' (propellant) to be carried on board

Operational temperature

- determines amount of thermal control to be performed

Spacecraft on slide include Ikonos (top left), Meteosat (top middle), Delfi C3 (top right), ERS (bottom left).

Spacecraft differ in performance, size, mass, shape, cost, reliability, development time, etc.
Spacecraft differ because of differences in:
Payload
Mission (mission duration)
Operations
Launcher
Etc.

Spacecraft differ in performance, size, mass, shape, cost, reliability, development time, etc.

Spacecraft differ because of differences in:
Payload
Mission (mission duration)
Operations
Launcher
Etc.

Shape depends on mission payload

Spacecraft Mission Payloads

- Communications
- Weather
- Geodesy
- Environment
- Science
- Surveillance
- Navigation
- Military
- Search and Rescue
- Etc.

Other payloads:

- Moon dust, comet samples
- Space station supplies: Oxygen, water, food, fuel (propellants), medicine, etc.
- Other spacecraft (e.g. as payload for launchers and space tugs)
- People (crew or tourists)

Other aspects influencing the shape of S/C

In space transportation

- Launcher payload envelope
- Lander / rover
- Docking system

Manned/Unmanned

- Pressurized or not?

Power requirements

- Solar panels or not (size)?

Attitude control

- 3D
- Spinning

Etc.

- Tumbling

Absence of aerodynamic shape ?

Absence of atmosphere!!!
Some exceptions, depending on extent of (planetary) atmosphere

ENVISAT, ESA's largest Scientific Satellite for Earth Observation
The solar cells look blue-ish since they mainly absorb the green part of the spectrum being the most energy intense part of the solar spectrum. Special coated coverglasses on the solar cells reflect the blue light and protect from radiation. Depending on the mission the coverglasses have a certain thickness.

Space blanket -From Wikipedia, the free encyclopedia
A space blanket, is a blanket used in emergency situations to reduce heat losses in a person's body due to thermal radiation and convection. First developed by NASA in 1964 for the US space program, the material consists of a thin sheet of plastic (often PET film) that is coated with a metallic reflecting agent, making it metallized polyethylene terephthalate or MPET, usually gold or silver in color, which reflects up to 97% of radiated heat.

Wrapping the "silver" side towards the body supports the loss of excessive heat. This condition is seen above and with S/C in general. Wrapping the "gold" side towards the both contains the heat to the body in case of undercooling.

Configuration of an EO satellite

On slide we have Landsat-7 schematic + Landsat-7 Enhanced Thematic Mapper (ETM +)

Slide shows TDRSS satellite.

To be discussed:

- GEO
- Need for antannae
- Antennas point to Earth
- Field of view (free line of sight)
- Communication requires high power
- Long life
- Photovoltaics used. Need to be pointed to the Sun

Configuring for thermal control

On slide we have James Web Space Telescope (right) and Spacebus 3000 spacecraft.
Spacebus is covered with MLI (gold/copper covered) to reflect the Sunlight.
For JWST, solar panel indicates direction of the Sun. On top we have the instrument, this instrument is to be kept really cool (a few K). To shield the instrument from the sunlight, a radiation shield is incorporated (the large layered structure seen in the figure.
(Show an emergency blanket or take some samples of MLI to class.

Configuring for Electrical Power Provision

On slide (left) we have on top DMSP and Gorizont in the middle ISO and JERS and bottom DSP.

On slide (right) we have Cassini Huygens and Voyager. Both spacecraft are destined for deep space (outer planets) and hence are equiped with radio-isotope nuclear generators.

A radioisotope thermoelectric generator (RTG, RITEG) is an electrical generator which obtains its power from radioactive decay. In such a device, the heat released by the decay of a suitable radioactive material is converted into electricity.

Another mean for power generation is the use of heat engines. These convert mechanical energy in to electrical energy. The mechanical energy is obtained from a cyclic expansion of a gas between to extreme temperatures.

Deep space mission \rightarrow Extreme reqts on SA

Rosetta S/C = ESA's Comet Chaser
 [http://www.esa.int/SPECIALS/Operations/SEMC1VAMS7F_0.html]

Rosetta will be ESA's first spacecraft to undertake long-term exploration of a comet at close quarters. A deep-space hibernation is included before comet rendezvous.
The mission consists of a large orbiter, designed to operate for a decade at large distances from the Sun, and a small lander, Philae. Each of these carries a large suite of scientific experiments designed to complete the most detailed study of a comet ever attempted. After entering orbit around Comet 67P/Churyumov-
Gerasimenko in 2014, the spacecraft will release the lander onto the icy nucleus. It will then spend the next two years orbiting the comet as it heads toward the Sun. On the way to Comet Churyumov-Gerasimenko, Rosetta has received gravity assists from Earth and Mars, and will fly past two main-belt asteroids Steins (September 2008) and Lutetia (July 2010).

Deep space mission \rightarrow Extreme reqts on SA

```
Rosetta mission }->\mathrm{ spacecraft as comet hunter
Low solar intensity 0.03 SC = 42 W/m}\mp@subsup{}{}{2}\mathrm{ Solar Constant AMO 1 SC = 1400 W/m}\mp@subsup{}{}{2}\mathrm{ at 1 AU
    Large solar array AMO = Atmospheric Mass Zero
    Low T= -130}\mp@subsup{}{}{\circ}\textrm{C
```


For the Rosetta mission the solar array had extreme requirements due to the extreme elliptical orbits towards the comet 67P / Churimov-Gerasimenko. The large solar array is equipped with specific Silicon high efficiency solar cells which yield sufficient power in LILT (Low Intensity Low Temperature) conditions. In this case the required orbit proves to be the design driver for the solar array.

AM0 $=$ Atmospheric Mass Zero - This refers to space conditions without or negligible amount of atmosphere. The $1400 \mathrm{~W} / \mathrm{m} 2$ solar intensity is valid just outside the Earth atmosphere.

Methods of attitude control and sensors

Methods:

- Free tumbling
- Spinning / dual-spin
- Gravity gradient
- 3-D control
- Thrusters
- Reaction wheels
- Control moment gyros
- Magnetic torquers

Sensors:

- Sun sensors
-Star trackers
-Limb sensors
-Inertial measurement unit
-GPS... !!!

The TUD Delfi-C3 S/C (as large as a huge milk carton) is a member of the Cubesat series. A new trend in S/C design enabling cheaper and COTS (Comercial Of The Shelf) production of S/C. The ADCS is passive using magnetic torquers only. These magnetic rods stabilize the S / C by force interaction with the Earth magnetic field lines. The free (remnant) tumbling movements require an omni-directional solar array design. The same is valid for the antennas.

Appollo Command Module shows thrusters to provide six degrees of freedom in active ADC

On slide we have Landsat-7 on right, SAR-LUPE at top right and envisat at bottom (middle)

Spacecraft on the left is an Orbcomm communications spacecraft

The fishing float analogy comprises
A) \quad Floating on the water surface \rightarrow equlibrium of centripetal force and gravitational force
B) \quad Small leads attached to the fishing line \rightarrow inertia added to the S / C yields vertical (along gravitational force lines) stability

Compare this condition to a massless rod with masses M1 and M2 at the ends at distances $r 1$ and $r 2$ from the Center-Off-Mass (COM) position along the rod. As long as the vertical attitude is not obtained a net torque (force x arm) about the COM results which is defined by the magnitude of M1 and M2 as well as R1 and R2. The equilibrium is defined by the (required) centripetal and gravitational forces on both masses. The COM position along the massless rod is found by (M1.r1+M2.r2)/(M1+M2)

With
R1 the distance to the Earth COM of mass M1
R2 the distance to the Earth COM of mass M2
R the distance of the rod COM to the earth COM

The (detailed) analysis is part of later lectures and not part of this lecture sequence.

Spin stabilization as is seen with bycicle wheels. A rotating body tends to keep its rotation axis fixed in space. Enlarging the wheel more stability is obtained. The Earth is another example. Deviations in orientation as seen with a childrens toy \rightarrow the spinning top (shown on top)
The rotational inertia is given by $I=M R^{2}$
This is best understood looking at the right picture. Assume that all mass M is located at the outer radius R for this formula.

ADCS \rightarrow Dual-Spin Spacecraft

Galileo was the first dual-spin planetary spacecraft

Galileo was the first dual-spin planetary spacecraft: a spinning section rotates at about 3 rpm , and a "despun" section is counter-rotated to provide a fixed orientation for cameras and other remote sensors

ADCS \rightarrow Spin stability

Explorer-1 spacecraft (1957)

- Spin stabilized about its longitudinal axis @ 750rpm
- Four flexible wire antennas for communication

What can go wrong?

To the surprise of mission experts, satellite Explorer 1 changed rotation axis after launch. The elongated body of the spacecraft had been supposed to spin about its long (least-inertia) axis but refused to do so, and instead started pre-cessing due to energy dissipation from flexible structural elements. This motivated the first further development of the Eulerian theory of rigid body dynamics (after nearly 200 years) to address dissipation.

ADCS \rightarrow Spin stability: what can go wrong?

The Ulysses mission 34 years later

Spin stability better understood but..

Still instability resulting from design

On slide we have left a Soyuz-Fregat stage transporting 2 Cluster satellites.
Dry S/C mass is S/C mass excluding propellant mass. Empty mass is dry mass including residual propellant mass. Launch mass is total mass launched. It includes loaded S/C mass (sum of S/C dry mass and propellant mass), (apogee) kick stage and launch adapter.

On the slide right we have the Orion S/C
Orion is a spacecraft design currently under development by the United States space agency NASA. Each Orion spacecraft will carry a crew of four to six astronauts. The spacecraft is designed to be launched by the Ares I, a launch vehicle, also currently under development. Both Orion and Ares I are elements of NASA's Project Constellation, which plans to send human explorers back to the Moon by 2020, and then onward to Mars and other destinations in the Solar System.

On slide we have Surveyor. This is an unmanned Moon Lander that transmitted TV pictures to Earth and conducted a local study of the Moon surface.

Moon program 1960-1972

Transponder = combination of transmitter and receiver.

Evolution in time Intelsat telecom S/C

Satellite	First launch (total number)	Launcher	Communication capacity	$\begin{array}{c\|} \hline \text { \# of } \\ \text { transpon- } \\ \text { ders } \end{array}$	Electrical power	Mass at orbit insertion	Satellite body		Attitude control	Design life	Cost satellite	Cost launch
							Diam	Height (total)				
				$(-)$	(Watt)	(kg)	(m)	(m)		year	10^{6} \$	
$\begin{aligned} & \hline \text { IntelSat } \\ & \text { I } \end{aligned}$	$\begin{aligned} & 1965 \\ & (1) \end{aligned}$	ThorDelta	240 telephone circuits or 1 TV channel	2	40	68/39	0.72	0.60	$\begin{gathered} \text { Spin } \\ \text { stabilisation } \end{gathered}$	1.5	7	4.7
$\begin{array}{\|l} \hline \text { IntelSat } \\ \text { II } \\ \hline \end{array}$	$\begin{gathered} 1966 \\ (3) \end{gathered}$	Improved Delta	Idem	Trends: - Increasing \# of transponders - Increasing electrical power					$\begin{gathered} \text { Spin } \\ \text { stabilisation } \end{gathered}$	3	3.6	4.6
$\begin{array}{\|l} \hline \text { Inte\|Sat } \\ \text { III } \end{array}$	$\begin{gathered} 1968 \\ (5) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Improved } \\ \text { Delta } \end{array}$	1200 telephone circuits and 2 TV channels						Spin stabilisation with despun antennae	5	6.25	5.75
$\begin{aligned} & \hline \text { Intelsat } \\ & \text { IV } \end{aligned}$	$\begin{gathered} 1971 \\ (7) \end{gathered}$	AtlasCentaur	4000 telephone circuits and 2 TV channels	- Increasing size - Increasing life - Increasing cost					Spin stabilisation with despun antennae	7	18.5	32.5
$\begin{aligned} & \text { IntelSat } \\ & \text { IVA } \end{aligned}$	$\begin{gathered} 1975 \\ (6) \end{gathered}$	AtlasCentaur	6000 telephone circuits and 2 TV channels						Spin stabilisation with despun antennae	7	21.5	32.5
$\begin{array}{\|l\|} \hline \text { IntelSat } \\ \mathrm{V} \end{array}$	$\begin{gathered} 1980 \\ (7) \end{gathered}$	AtlasCentaur	12000 telephone circuits and 2 TV channels	27	1200	$\begin{aligned} & \hline 1870 / \\ & 1012 \end{aligned}$	20	15.7	Three axes stabilized	7	28.0	32.0

Figure shows satellites have increased in size. In addition, it shows: -introduction of parabolic reflectors allowing for more directed power -Larger solar arrays

Text taken from Volkskrant, Saturday 5, September 2009.

Reliability \& failure data

Some failure data

- Out of 456 small satellite missions flown between 1956 and 1996310 spacecraft launched successfully
- 69% orbit insertion reliability \rightarrow insertion failure rate 0.32 /insertion

Include reliability data in text lecture notes, see part B.

Data on slide taken from
http://www.engin.brown.edu/courses/en176/2003\ Lectures/meeting\ 9/9_3 _19_02.ppt\#328,7,Weakest Link? Small Satellite Historical Survey results: 1956 - 1996

The Sputnik only had a single transmitter whilst the Envisat has 10 dedicated scientific instruments.

Definition taken from Surrey.

Some mass definitions

Launch mass: Total spacecraft mass at launch. Besides the spacecraft itself, it may include mass of kick stage, and launch vehicle adapter

Total spacecraft mass: Gross or loaded spacecraft mass
BOL spacecraft mass: Mass of spacecraft at Begin Of Life (BOL), also referred to as on-station mass

Spacecraft dry mass: Total spacecraft mass minus the mass of expendables

EOL spacecraft mass: Mass of vehicle at End of Life (EOL)
Spacecraft dry mass (VDM): Net or final vehicle mass: Dry vehicle mass plus residuals and gases at cut-off (burnout)

S/C Mass Estimation

How? $\quad \Rightarrow$ By using historical data on payload to vehicle mass ratio + averaging

Spacecraft	Payload mass	Vehicle mass	Payload to vehicle mass ratio
	(kg)	(kg)	$(\%)$
Monitor M	420	750	56
EROS-A	36	250	14.4
Average			

Minimum 5-10 spacecraft data needed to allow for a reasonable estimate !!

> Can we apply this method also to estimate other parameters, like electrical power, of the spacecraft ??

Why do we take an average percentage and not say an average of the total mass of the vehicles in our table?

Spacecraft Body Size Estimation

Dimensions can be estimated from spacecraft mass - M_{sC}

Spacecraft body volume $V=M_{S C} / \rho$

Spacecraft density - ρ
Large spacecraft [SMAD]

- $75 \mathrm{~S} / \mathrm{C} \rightarrow 136 \mathrm{~kg}<$ total mass $<3625 \mathrm{~kg}$
- $20-179 \mathrm{~kg} / \mathrm{m}^{3} \rightarrow$ average is $79 \mathrm{~kg} / \mathrm{m}^{3}$

Smallsats

- $18 \mathrm{~S} / \mathrm{C}$ - dry mass $<300 \mathrm{~kg} 200-1000 \mathrm{~kg} / \mathrm{m}^{3} \rightarrow$ average is $338 \mathrm{~kg} / \mathrm{m}^{3}$

Large spacecraft [SMAD]: $\mathrm{V}=0.01 \mathrm{M}_{\mathrm{sC}}$
Smallsats [TU-Delft]: V = $0.003 \mathrm{M}_{\mathrm{sc}}$
Spacecraft body size depends on basic shape of body (box, cylinder, etc.)

TuDelft	AE1102 Introduction to Aerospace Engineering II	52

Large spacecraft [SMAD, section 10.5.1], $75 \mathrm{~S} / \mathrm{C}, 136 \mathrm{~kg}$ < total mass < 3625 kg): $20-179 \mathrm{~kg} / \mathrm{m}^{3}$, average is $79 \mathrm{~kg} / \mathrm{m}^{3}$

Question to students:

For a number of spacecraft collect mass and size data and determine spacecraft mass density and plot mass density versus spacecraft mass.
When designing a satellite, it is advised to select a number of comparable satellites and use these satellites to determine typical densities. When doing so, you must give care to appendices (antenna's, solar panels, etc.) and propellant tanks. The latter take up (based on empty mass ar Studied 75 U.S. spacecra ‘84)

- Various Earth-orbiting
- Mass ranged from 135
- Density ranged from $2($
- All spacecraft were cyli rectangular to circular

Volume of satellite is not

boxes. All boxes need space to get rid of excess heat.

Spacecraft cost estimation

Spacecraft cost

- ... can be related to spacecraft in-orbit mass
- Specific cost is cost per unit of mass
- Typical spacecraft specific cost are $30-500 \mathrm{k} \$ / \mathrm{kg}$ (FY 2000 cost data), depending on type of spacecraft (mid-sized car: 25-50 \$/kg)

Example: A spacecraft with an estimated mass of 1000 kg might cost anywhere in between US\$ 30 million to 500 million

Cost depend on how unique the spacecraft is, its complexity, the amount of testing involved and its life

Earlier in this presentation some data are given on the costs of INTELSAT communications satellites indicating a specific cost for development and launch of $50.000-300.000 \$ / \mathrm{kg}$ (based on in-orbit mass). For the International Space Station this is about $450.000 \$ / \mathrm{kg}$ and for Globalstar about $50.000 \$ / \mathrm{kg}$ (based on a mass for each satellite of 450 kg and $1300 \mathrm{M} \$$ investment costs for the space segment including launch. Source: Jane's Space Directory, 2000). For comparison, the specific cost of a mid-sized car is less than about $25 \$ / \mathrm{kg}$.

Other indications of the complexity of space systems are the high number of personnel involved in the development, and the total time required from the initial conception of a space mission to its launch and operation (typically several years).

