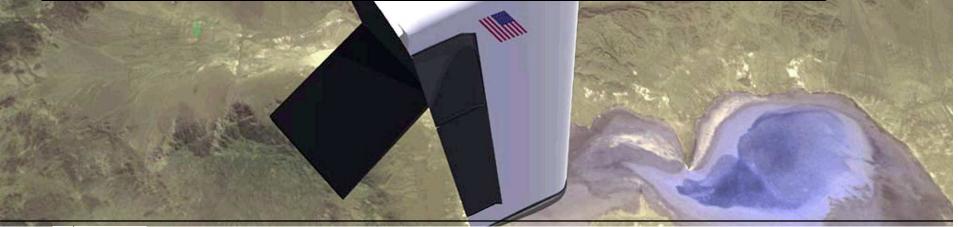
Introduction to Aerospace Engineering


Lecture slides

Selection of material & structure Space

Faculty of Aerospace Engineering 12-12-2011


Challenge the future

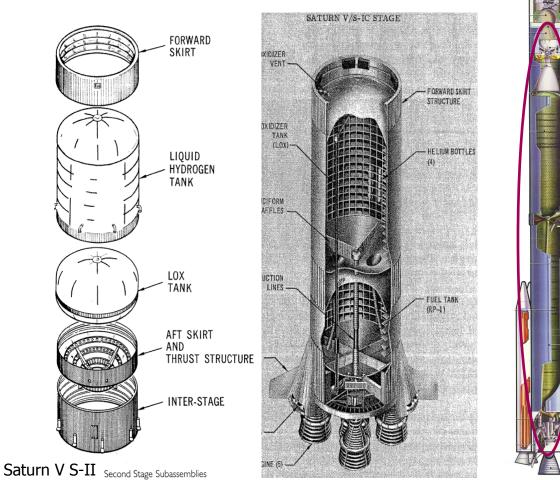
Learning objectives Student should be able to...

- Describe the basic steps in dimensioning a spacecraft structure
- Design simplified structure for minimum natural frequency requirements

- Spacecraft
 - Struts
 - Central cylinder
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors

Selection of material & structure 3

- Spacecraft
 - Struts
 - Central cylinder
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors
- Characteristics
 - Central thrust-load-bearing member (cone/cylinder)
 - All systems attached at strong points directly, or by combinations of Struts/Platforms/Shear webs


- Spacecraft
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors

- Spacecraft
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors

 Spacecraft • Launch vehicle - Semi-monocoque (load bearing skin internally stiffened) • Fairings - External skin, internal tanks separated • Stage structure by longerons and cricular stiffeners Thrust structure Adaptors CEV Forward Skirt Intertank CEV Side Spacecraft Adapter **CLV Side Instrument Unit**

LH2 Tank

- Skins - Insulation

- Frames and Baffle

Selection of material & structure

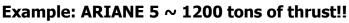
Systems

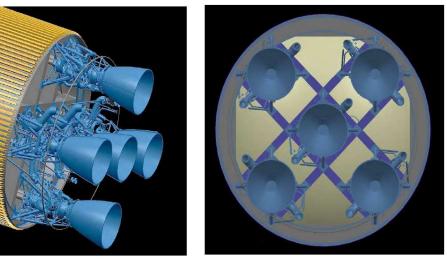
Tunnel

LOX Tank

Skins Insulation

Frames and Baffles

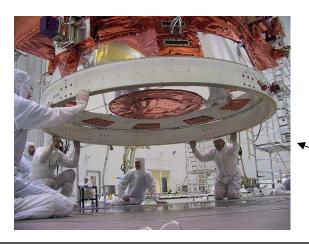

RCS Pods

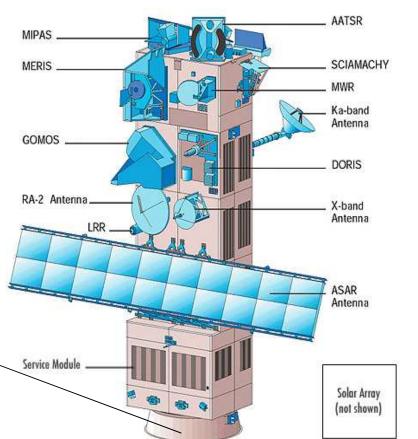

Thrust Structure Aft Skirt

12X

Thrust Cone

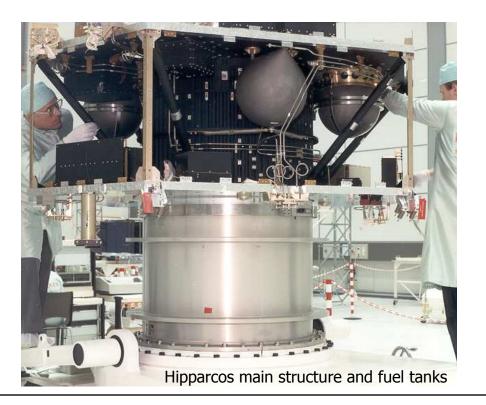
- Spacecraft
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors





Selection of material & structure

- Spacecraft
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors



Selection of material & structure 9 |

- Spacecraft
- Launch vehicle
 - Fairings
 - Stage structure
 - Thrust structure
 - Adaptors

Spacecraft structures Mission requirements

- Minimum mass
- High stiffness
- Withstand the loads (= high strength)
- Accommodate payload + equipment
- High reliability
- Low cost
- Accessibility, manufacturability

Material properties

C. R. corrosion resistance

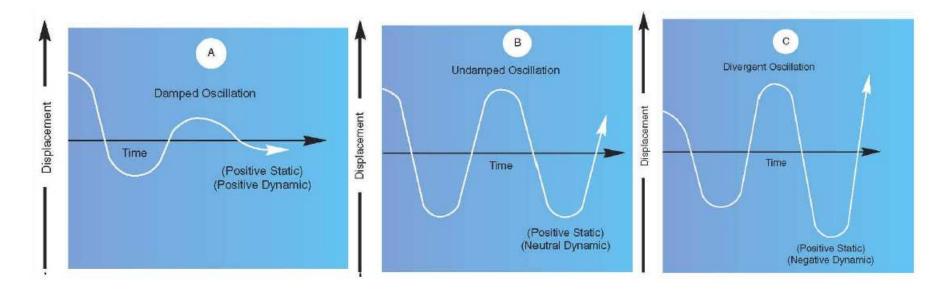
S. C. C. stress corrosion cracking

Caution: There is considerable variation of the properties of materials according to conditions (ageing, temper, form and structure orientation). Consult manufacturers' data

	Density (kg/m ³)	Young's modulus E(GPa)	s strength	Selection criteria				Thermal expansion	Fracture toughness	Fatigue strength	Comment
				Ε/ρ	$E^{1/2}/\rho$	E ^{1/3} /p	fy/P	(μm/m K ⁻¹)	(MPa m)	(MPa)	
Aluminium alloy											
6061.T6	2700	68	276	24	2.9	1.5	98.6	23.6	186	97	Good C.R
7075.T6	2800	71	503	26	3.1	1.5	186.3	23.4	24	159	Prone to SSC in T6 Form
Magnesium alloy											
A2 31B	1 700	45	220	26	3.9	2.1	129.4	26			Prone to SCC
ZK 60 A.T5											
extrn	1700	45	234	26	3.9	2.1	137.6	26		124	
Fitanium alloys											
T1-6A1-4V											
(annealed)	4400	110	825	25	2.4	1.1	187.5	9	75	500	
(solution treated											
and aged)			1035						42	690	
Beryllium alloys											
S 65 A	2000	304	207	151	8.7	3.4	103.5	11.5			Hot pressed) Low
SR 200 E	2000		345								sheet fracture
Ferrous alloys			2.2								toughness
INVAR		150	275/415					1.66			Low expansion
Stainless steel											Ferromagnetic
AM 350 (SCT850)	7700	200	1034	26	1.84	0.8	134.3	11.9	40/60	550	e la
304L Ann	7800	193	170	25	1.8	0.7	21.8	17.2			Austenitic
Composites	/000										
	1200	76*	13 79 †	55	6.3	3.1	999.3	4			Structure members
KEVLAR 49 0°	1380			55 4	0.3 1.7	1.3	21.4	57			Pressure vessels
(Aramid fibre) 90°	1380	5.5	29.6	4	1./	1.5	21.4	31			Rocket casings
Graphite epoxy											-
sheets (undirec-	1620	282	586	174	10.4	4.0	361.7		ngitudinal)		Sheet
tional) GY70/934								29.7 (Tr	ansverse)		
Column ref. (see											
text)	Α	в	С	D	E	F	G	н	I	J	

*Tensile modulus

[†]Tensile strength


Material selection criteria Frequency

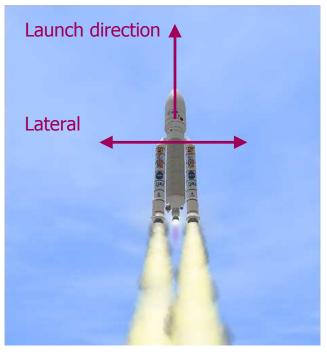
- Limiting the natural frequencies of spacecraft is essential to avoid resonance between launch vehicle and spacecraft
- Low dynamic coupling results in lower loads for spacecraft

Material selection criteria Natural frequency

- Oscillations can be damped or excited
 - Example: aerodynamic flutter

(recall the flutter of horizontal & vertical tail planes)

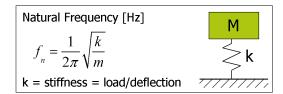

TUDelft


Material selection criteria Frequency

- Requirements are launcher dependent:
- ARIANE 4
 - Launch direction >31 Hz
 - Lateral >10 Hz
- STS

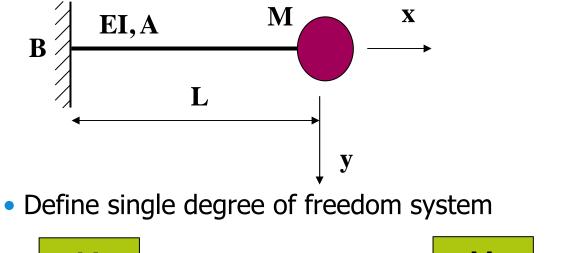
TUDelft

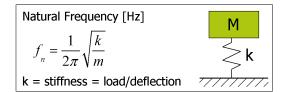
- Launch direction >13 Hz
- Lateral >13 Hz



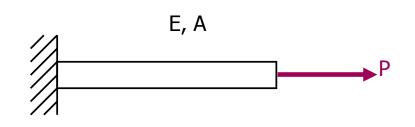
Selection of material & structure 15 | 28

Material selection criteria Frequency


- Dimensioning the primary structure
- First
 - Lowest natural frequencies > minimum required natural frequencies!
- Then
 - Design for quasi-static loads


Frequency – Example on stiffness sizing

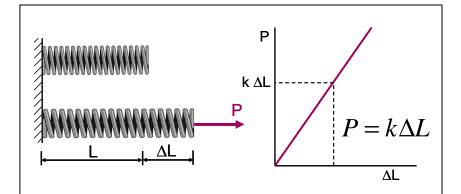
• Mass concentrated at end of clamped beam

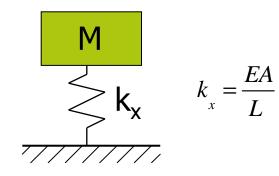


TUDelft

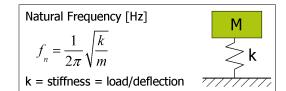
Frequency – Example on stiffness sizing

Axially loaded beam

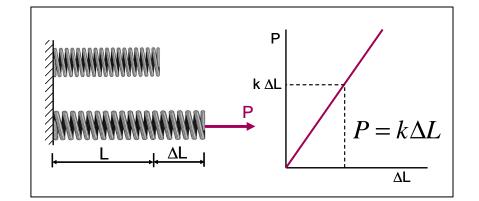



$$\varepsilon = \frac{\Delta L}{L} = \frac{P}{EA} = \frac{\sigma}{E}$$

• Elongation

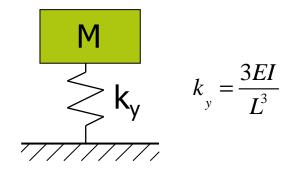

$$\Delta L = P \frac{L}{EA}$$

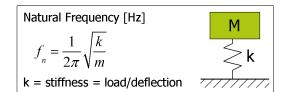
TUDelft



Selection of material & structure 18 | 28

Frequency – Example on stiffness sizing

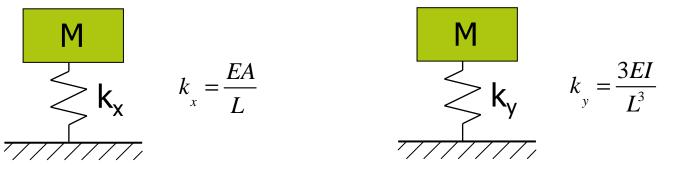

• Laterally loaded beam P E, I



Deflection

$$\delta = \frac{PL^3}{3EI}$$

TUDelft


Frequency – Example on stiffness sizing

• The natural frequency is

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad [Hz]$$

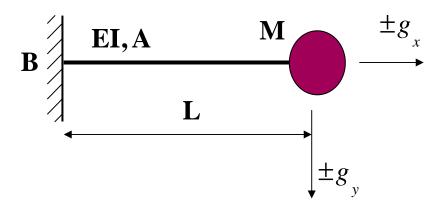
• Which means for the stiffness

$$\frac{3EI}{L^3} \ge \left(2\pi f_n\right)^2 M \qquad \frac{EA}{L} \ge \left(2\pi f_n\right)^2 M$$

SMAD III, Fig. 11-42 Equations 11-57,11-58

TUDelft

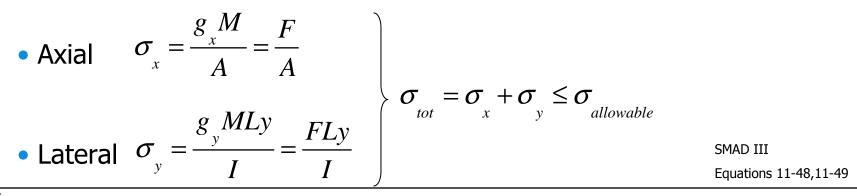
Selection of material & structure


Material selection criteria Frequency

- Dimensioning the primary structure
- First
 - Lowest natural frequencies > minimum required natural frequencies!
- Then
 - Design for quasi-static loads

Sizing Example Strength Frequency – Example on stiffness sizing

Maximum stress at clamping

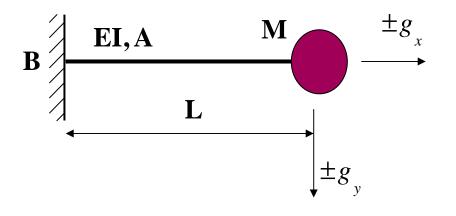


Structure/geometry

- Define I and A

Material

- Select material with E


TUDelft

Selection of material & structure 22 | 28

Sizing Example Strength Frequency – Example on stiffness sizing

Buckling load

TUDelft

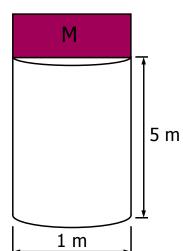
• Euler
$$F_{euler} = \frac{\pi^2 EI}{4L^2} \le g_x M$$

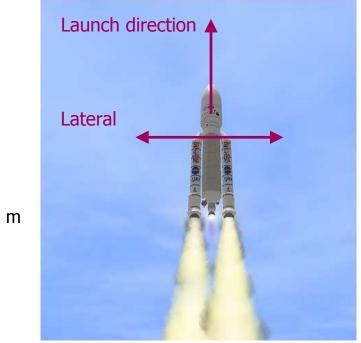
Structure/geometry

- Define I and L

Material

- Select material with E
- \Rightarrow Bending stiffness EI!

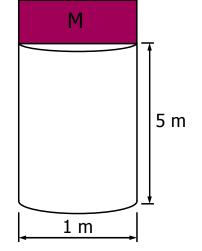

SMAD III Equations 11-48,11-49


Selection of material & structure 23 | 28

Material selection criteria Example

- Required wall thickness
- ARIANE 4
 - Launch direction >31 Hz
 - Lateral >10 Hz
- Conditions
 - M=250 kg
 - E = 72 GPa (aluminium)
 - Max. axial acceleration
 = 6 g (launch load)
 - Payload = point mass
 - $M_{cylinder} = 0$

TUDelft



Selection of material & structure 24 | 28

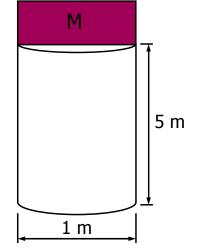
Material selection criteria Example

- Required wall thickness (frequency)
 - Launch direction >31 Hz

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \ge 31 Hz$$

• With m=250 kg

$$k = \frac{EA}{L}$$


$$\Rightarrow A \ge \frac{mL}{E} \left(2\pi f_1 \right)^2 \qquad \text{with} \quad A = 2\pi rt \qquad \Rightarrow t \sim 1 \text{ mm}$$

Selection of material & structure 25 | 28

Material selection criteria Example

- Required wall thickness (quasi-static loads)
 - Axial acceleration = 6 g
 - Lateral direction = 1.5 g

TUDelft

• Axial
$$\sigma_x = \frac{g_x M}{A} = \frac{F}{A}$$

• Lateral $\sigma_y = \frac{g_y MLy}{I} = \frac{FLy}{I}$

• With
$$\sigma_{\text{allowable}}$$
 = σ_{ultimate} / safety factor \Rightarrow A & I

Selection of material & structure 26 | 28

Summary

Space

- Typical spacecraft & launch vehicle structures
- Steps in dimensioning a spacecraft structure
 - Natural frequency
 - Quasi-static loads
- Example simplified structure for minimum natural frequency requirements

