Introduction to Aerospace Engineering

Lecture slides

Structures Aircraft & spacecraft shell structures

Faculty of Aerospace Engineering 22-11-2011

Challenge the future

Introduction

Outline of lectures/lecturer

- 15/11 Material physics & properties / environment Structures Loads 6/12 Materials & manufacturing Selection of materials & structures / space Design & certification / fatigue & durability
 6/1 Manufacturing & joining
- Lecturer
 - Name: R.C. Alderliesten (Structural Integrity)
 - Room: NB0.45
 - Email: <u>R.C.Alderliesten@tudelft.nl</u>

Learning objectives Student should be able to...

- Give definition of
 - Airframe
 - Principal structural elements
 - Secondary structural elements

- List typical structural elements for aircraft and spacecraft
- Explain the function of sheets
- Explain the difference between material stiffness and structural (geometrical) stiffness

Aircraft & spacecraft structures Definition of airframe

- Aircraft/spacecraft without installed equipment and furnishing
- Consists of load bearing parts: parts that take up forces during
 - normal flight
 - maneuvers
 - take-off
 - Landing, etc.
- Consists of skin and framework (skeleton) that provide aerodynamic shape
- Protects contents from environment

Aircraft structures Examples

• Skin and framework

Spacecraft structures Examples

• Skin and framework

Aircraft & spacecraft structures Definition of primary/secondary structure

- Primary structure
 - Critical load bearing structure of an aircraft/spacecraft that in case of severe damage will fail the entire aircraft/spacecraft

- Secondary structure
 - Structural elements of an aircraft/spacecraft that carry only air and inertial loads generated on or in the secondary structure

Aircraft & spacecraft structures Typical elements

• Fuselage shells

- Skin
- Frames
- Stringers
- Bulkheads
- Splices
- Wing structure
 - Wing skin panels
 - Ribs
 - Spars
 - Assembly of spars & skin

Shell structures

TUDelft

Recall: from truss to shell structures

• Function of diagonal elements (tension & compression)

Replacement by sheet (compression causes buckling)

Structures 9 | 25

Shell structures Examples of buckling

• Buckling of sheet

Shell structures

Sheet material

• A sheet has more capabilities than reinforcing a structure!

Shell structures Stiffness of sheet material

- A sheet in compression bends out
 - Sheet in tension is not a problem

Shell structures

Example of folding/corrugating sheet

• Junker 52 - 1932

Shell structures

Selection of stiffening configuration

• Comparison of stiffener geometry

Shell structures Stiffener geometry

• Preferred shape depends on type of load

Shell structures

Stiffener geometry

Shell structures Stiffener geometry

- Sheet geometrically reinforced by stiffeners
- Example stiffeners
 - Stringers
 - <complex-block>

Shell structures Stiffener intersections

- Butt-joints
- Doublers
- Intersection of stiffening elements

Structures 18 | 25

Shell structures Other stiffening concepts

Shell structures Other stiffening concepts

- Integral structure by machining
 - low cost
 - low part count
 - simple blade stiffening
 - thickness continuously adaptable
 - lot of scrap (90%)
 - rapid crack growth
 - thick skin \Rightarrow large aircraft

- Sandwich structure
 - No stringers needed
 - Smooth structure
 - Difficult to repair
 - Difficult to join

- Excellent structural concept, however..
 - complex and expensive details
 - corrosion (metal) and delamination (composites) problems

- Sandwich: Excellent structural concept, however..
 - Corrosion (metal) and delamination (composites) problems
 - 1970s: Bréguet Atlantic
 - Problem: Moisture ingress in honeycomb \rightarrow corrosion

- Sandwich: Excellent structural concept, however..
 - Corrosion (metal) and delamination (composites) problems
 - March 6, 2005: Airbus A310-308 Air Transat Flight 961
 - Problem: In-flight separation of composite rudder

Summary

Aircraft & spacecraft structures

- Shell structures
 - provide function as diagonal element
 - Can be geometrically stiffened
- Stiffeners
 - Have different shapes depending on load and manufacturing
 - Can be attached to skin sheet or milled from thick plate
- Sandwich panels
 - Face sheets carry tension/compression loads
 - Core carries the shear load

