Introduction to Aerospace Engineering

Lecture slides
Aircraft & spacecraft loads
Static & Dynamic
Faculty of Aerospace Engineering
29-11-2011
Learning objectives

Student should be able to...

• Describe the most relevant loads for
 • An aircraft
 • A spacecraft

• Explain whether these loads are
 • Static or dynamic
 • Concentrated or distributed
Identify relevant loads

Aircraft structure

- The airframe is externally loaded
Identify relevant loads

Aircraft structure

- The airframe is externally loaded
Identify relevant loads

Aircraft structure

- The airframe is externally loaded
 - Maneuvers
 - Gust
 - Cabin pressure
 - Landing
 - etc.

by concentrated or distributed forces
Load paths

Simple structure

- What is a load path?
 - Path to link applied load to equilibrium forces
Load paths

Buttress structure
Load paths

Simple structure

• Bending of beam
Load paths

Simple structure

- Bending of beam

Load path
- Upper girder: tension
- Lower girder: compression
- Web plate: shear
Load paths

Simple structure

• Bending of beam

• Load path
 • Upper girder: tension
 • Lower girder: compression
 • Web plate: shear
Identify relevant loads

Airframe

- Bending
 - Wing bending (upward)
 - Fuselage bending (downward)
Load paths

Airframe

- Landing and taxiing
 - ‘concentrated forces’ acting on undercarriage
Load paths

Airframe

- Vertical tail load
 - Bending of vertical tail
Load paths

Airframe

- Vertical tail load
 - Bending of vertical tail
 - Bending & rotation of fuselage
Load paths

Airframe

- Vertical tail load
 - Bending of vertical tail
 - Bending & rotation of fuselage
 - Shear of fuselage side panels
Load paths

Airframe

- Wing load \Rightarrow deformation
 - Upward bending of wing
 - Rotation of wing

- Deformation \Rightarrow stresses
 - Compression and shear in upper wing skin panel
 - Tension and shear in lower wing skin panel
Load paths

Airframe

- Bending and torsion

- Measure against torsion?
Load introduction

Wing/fuselage connection

- Example
 - A400M
Load introduction

Wing/fuselage connection

- Example
 - A400M
Load introduction

Wing/fuselage connection

- Example
 - A400M

Wing/fuselage connection F-27
See question 14 related to the study collection
Design load cases

Aircraft fuselage structure

- Different locations ⇒ different loads & criteria!
Design load cases

Aircraft structure

- Dynamic loads (example of flutter)
 - Oscillation of aircraft component caused by the interaction of aerodynamic forces, structural elastic reactions, and inertia
Identify relevant loads

Spacecraft structure

- Gravity
 - Handling and transportation loads
- Vibration and acoustic test loads
- Launch loads (static & dynamic)
 - Quasi-static
 - Sine vibration
 - Acoustic noise and random vibration
 - Shock loads
- In-orbit loads
 - Shocks
 - Structurally transmitted loads
 - Internal pressure
 - Thermal stress
Identify relevant loads

Spacecraft structure

- Steady state load
 - Axial: launch vehicle engine trust
 - Lateral: wind gust & vehicle maneuvers
Identify relevant loads

Spacecraft structure

- **Load path**
 - Primary axis \(\perp \) direction of maximum acceleration

- Primary axis \(\parallel \) direction of maximum acceleration
Summary

Aircraft & spacecraft loads

- Identify relevant loads
 - Static or dynamic
 - Concentrated or distributed

- Load paths
 - Load introduction
 - Equilibrium