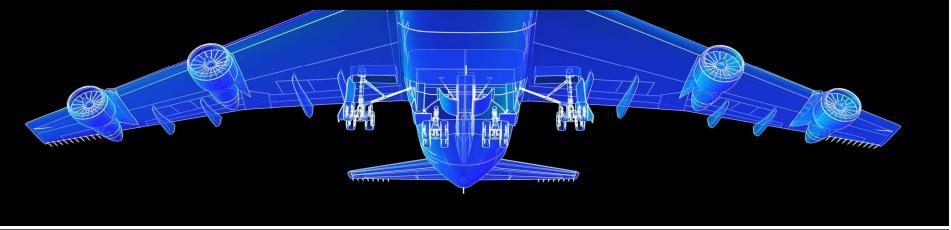
Introduction to Aerospace Engineering

Lecture slides



Aircraft & spacecraft loads Translating loads to stresses

Faculty of Aerospace Engineering 29-11-2011



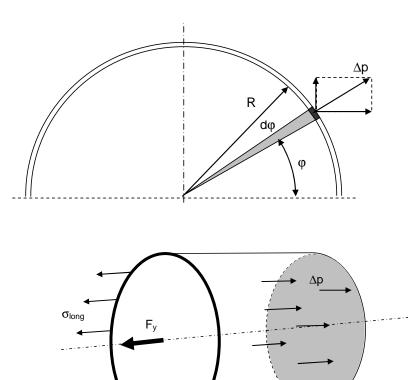
Learning objectives Student should be able to...

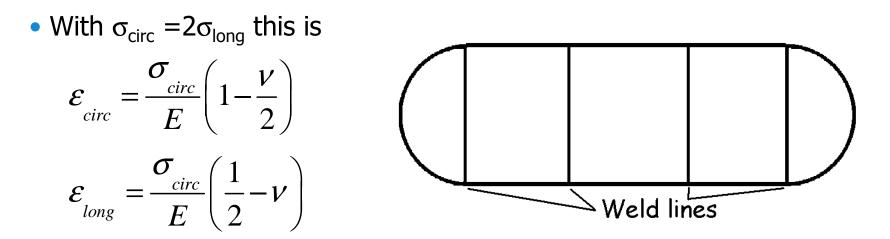
- Calculate the stresses in
 - Fuselage shell due to pressurization (case I)
 - Fuselage shells due to applied torsional load (case II)
 - Wing spars due to applied bending loads (case III)

• Revisit stresses in pressure vessel

$$\sigma_{circ} = \frac{pR}{t}$$
; $\sigma_{long} = \frac{pR}{2t}$

ŤUDelft



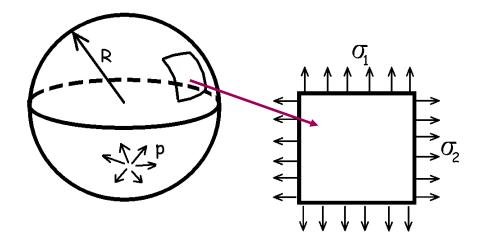


• For a metallic pressure vessel with $\nu\approx$ 0.3 this means that

$$\epsilon_{circ}$$
 =4.25 ϵ_{long}

• For a sphere under pressure

$$\sigma_{1} = \sigma_{2} = \frac{pR}{2t}$$

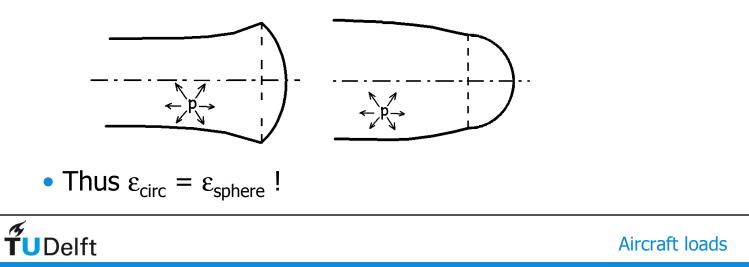


• The strain in a sphere is equal in all directions

$$\varepsilon_{sphere} = \frac{pR}{2t} \frac{1}{E} (1 - \nu)$$

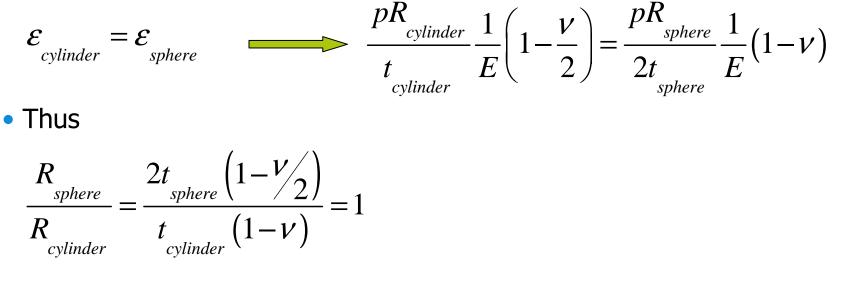
What ratio t_{sphere}/t_{cylinder} is needed to connect cylinder to sphere in a pressure vessel?

• Avoid discontinuities in ϵ_{circ} to avoid these deformation mismatches



6 | 32

Derivation

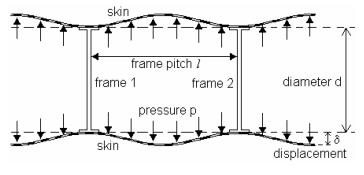


• With $R_{cylinder}$ = R_{sphere} this means t_{sphere} \approx 0.4 $t_{cylinder}$

Fuselage structure

Pressurization (case I)

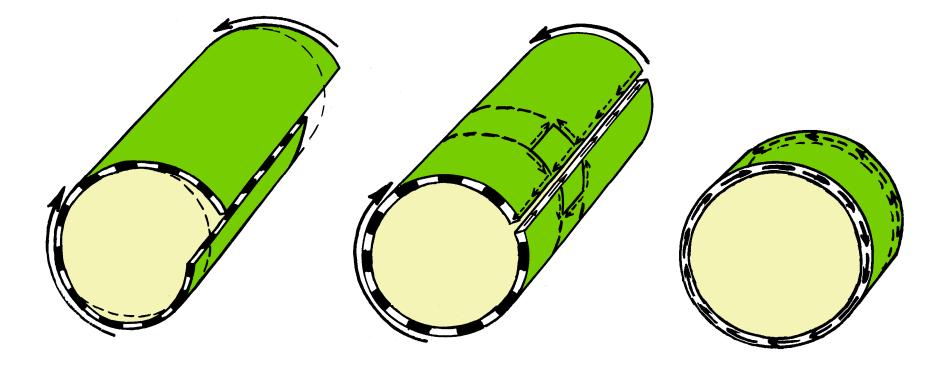
- Aircraft pressure cabin
 - Role frames & stringers (5 10%)
 - Other disturbances (doublers around cut-outs)



- Fracture of fuselage could be disastrous: `exploding balloon'
- No limit load (formal definition: once in the lifetime of the aircraft), "limit" load occurs every flight during pressurization of the cabin ⇒ safety factor is 2

- Aircraft pressure cabin
 - Design pressure differential $p_d = p_{cabin} p_h$
 - Cabin altitude: p_{cabin} related to altitude of 2400 3000 m
 - Safety factor j=2: $p_{ult} = 2 p_d = 2(p_{cabin} p_h)$
- Example
 - Pressure differential is 45 kPa
 - Aircraft altitude of h =9050 m \Rightarrow cabin altitude of 2440 m
 - Aircraft altitude of h =10350 m \Rightarrow cabin altitude of 3050 m

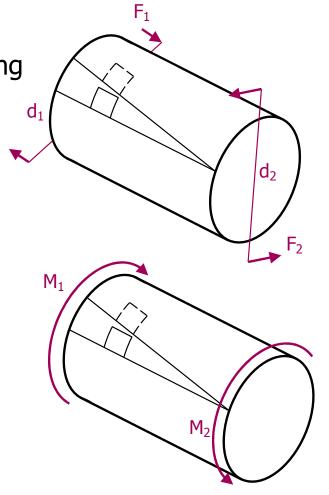
• The axial stresses in a tube under torsion



- Function of cylinder against torsional loading
 - Rectangular shape
 - Deforms like

• Equilibrium if $F_1d_1 = F_2d_2 = F_nd_n$

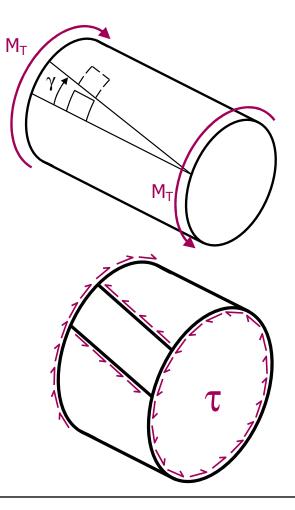
$$\Rightarrow$$
 M₁ = M₂ = M_T



• Torsion causes shear stress & strain

$$\gamma = \frac{\tau}{G}$$

• Equilibrium: $\tau_{outside} = \tau_{cross \ section}$



Torsion causes shear stress

$$\gamma = \frac{\tau}{G}$$

TUDelft

- Equilibrium: $\tau_{outside} = \tau_{cross section}$
- Torsional moment

$$M_{T} = \tau 2\pi r t r = 2\tau \pi r^{2} t$$

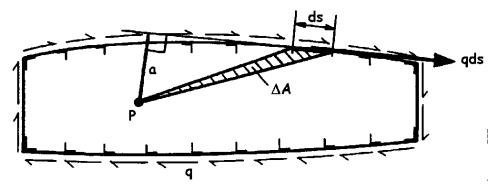
circumference area
circle circle

M_T

• Define
$$q = \tau t \implies M_T = 2qA$$

Aircraft loads 13 | 32

• Thin walled box, stringers not loaded, torsion moment MT



• Moment around an arbitrary point: $q \, ds \, a = \Delta M_T$

• with $a ds = 2\Delta A$

TUDelft

• All `fractions' together:
$$M_T = 2qA$$
 \longrightarrow $q = \frac{M_T}{2A}$

7 4

• For a thin walled closed box (enclosed area A) the shear flow is

$$q = \frac{M_{T}}{2A}$$

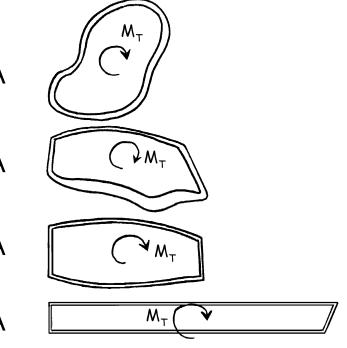
- All cross sections have the same shear-flow q
- A torsion box does not need to have a circular cross section

enclosed area $\equiv A$

enclosed area $\equiv A$

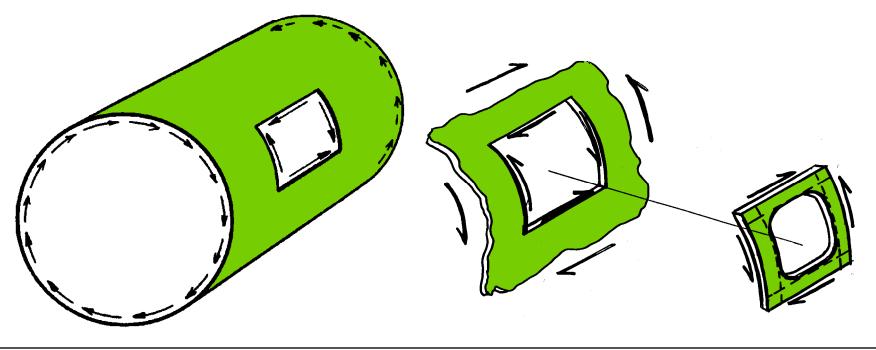
enclosed area $\equiv A$

enclosed area $\equiv A$

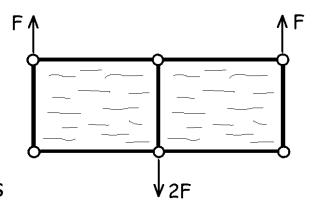


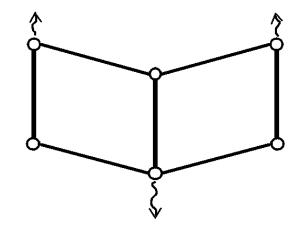
TUDelft

- The torsion box will not "function" at a cut-out
- A stiff frame with rigid corners around the cut-out is needed

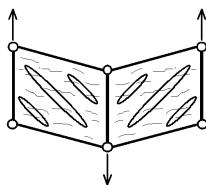


- Consider elementary spar
 - Diamond shaped deformation is resisted by sheets
 - Frame exercises a shear stress on the sheets
 - As reaction: sheets exercise shear stress on the frame
 - Assumption: bars of frame very stiff, no deformation
- Without sheets: Frame is not functioning

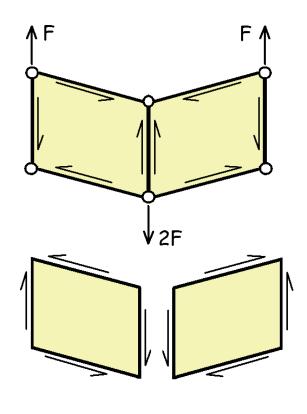




- If frame functions, sheets in equilibrium
- High forces: pleat formation
 - However: Structure still functions !

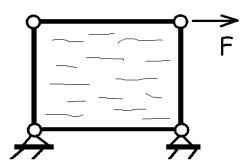






- Resistance to shear is the resistance to tension and compression under 45 degrees. Relationship: E, v, G

• Break down the elements \Rightarrow book keeping



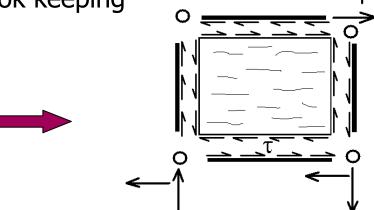
- Global
 - Horizontal equilibrium:
 - Vertical equilibrium:
 - Moment equilibrium:
- Local
 - Equilibrium in elements

 $F - F_{1x} - F_{2x} = 0$ $F_{1y} - F_{2y} = 0$ $F h + F_{1y} w = 0$

 F_{1x}

• Break down the elements \Rightarrow book keeping

F

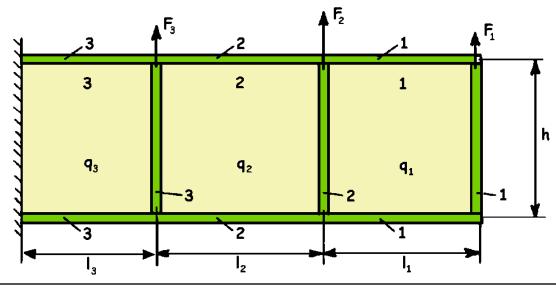


 For shear there is physically no difference but we need a sign convention



TUDelft

- In bending, the function of spar webs (shear) is essential! The webs have to be supported on the upper and lower side by caps in order to realize equilibrium
 - webs transfer (external) transverse forces into shear-flows
 - caps transfer shear-flows in normal forces

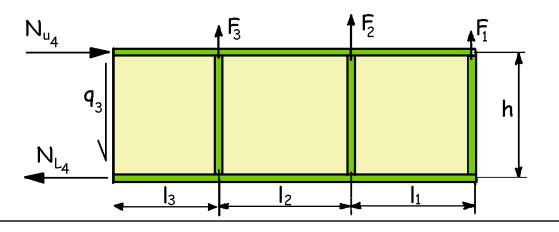


- Global equilibrium (always check!)
 - Horizontal: $N_{U_4} N_{L_4} = 0$ $\sqrt{}$
 - Vertical:

$$F_{1} + F_{2} + F_{3} - q_{3}h = 0 \quad \checkmark$$

TUDelft

$$N_{U_4}h - F_1(l_1 + l_2 + l_3) - F_2(l_2 + l_3) - F_3l_3 = 0 \quad \checkmark$$

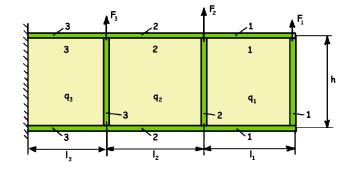


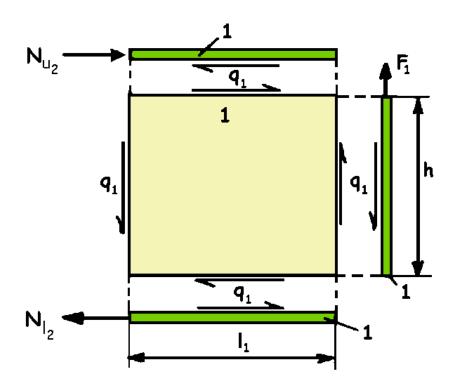
Aircraft loads 22 | 32

- Web plate 1 and upper and lower cap 1
- Equilibrium of forces in cap 1 F - q h = 0

$${}^{1} {}^{I_{1}} = {}^{I_{1}} = \frac{F}{\frac{1}{h}} {}^{I_{1}} = \frac{F}{\frac{1}{h}}$$

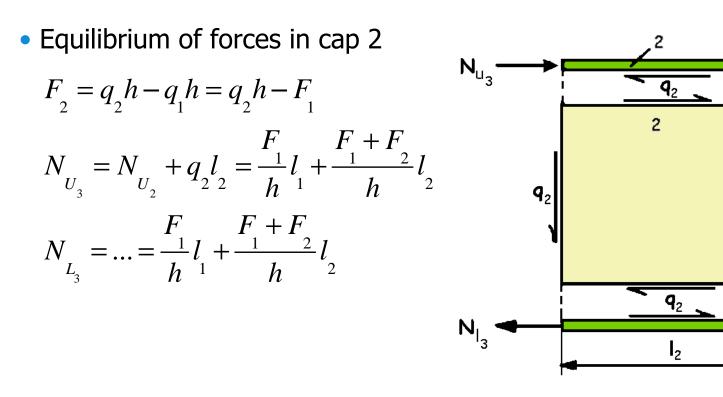
• q₁ is shear flow in web plate 1

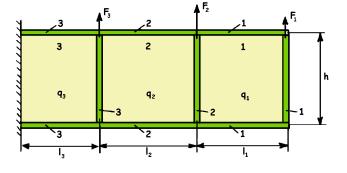




TUDelft

• Web plate 2 and upper and lower cap 2

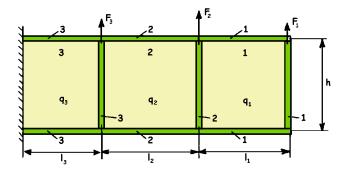


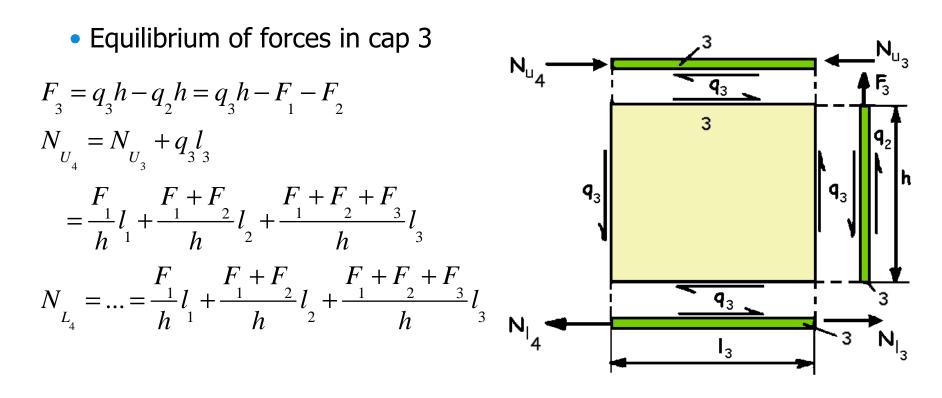


 \mathbf{F}_{2}

TUDelft

• Web plate 3 and upper and lower cap 3



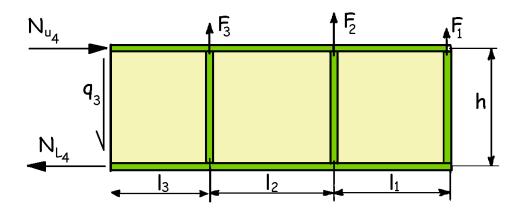


Aircraft loads 25 | 32

TUDelft

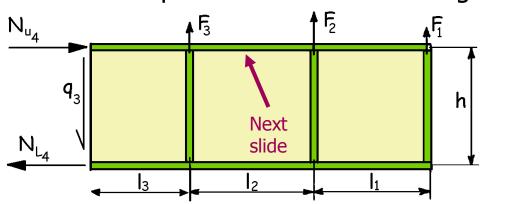
• Shear flow in the webs: $q_n = \frac{D_n}{h}$

• Transverse force building up: $D_n = F_1 + F_2 + ... + F_n = \sum_{i=1}^{n} F_i$

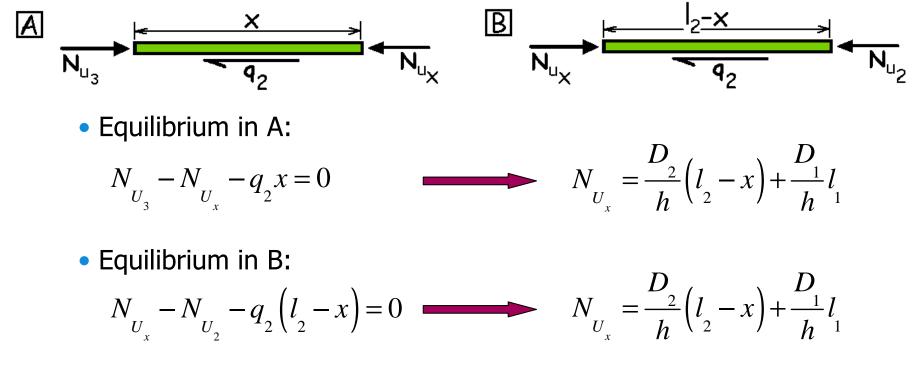


• Shear flow in the webs: $q_n = \frac{D_n}{h}$

- Transverse force building up: $D_n = F_1 + F_2 + ... + F_n = \sum_{n=1}^{n} F_n$
- Normal force in the caps at the location of stringers: $N_{m+1} = \frac{1}{h} \sum_{n=1}^{m} D_n l_n$



TUDelft



• Normal force increases linearly from outboard to inboard !

• The bending moment at location x in the spar is:

$$N_{U_x} h \equiv M_x = D_2 (l_2 - x) + D_{11} l_1$$

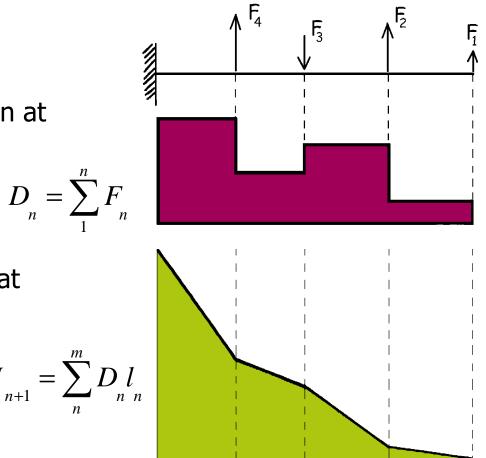
- We see that that for I_2 $\frac{dM}{dx} = -D_2$
- This is valid on every location x on the spar:

$$\frac{dM_x}{dx} = -D_x$$

- External forces F_n
- Transverse shear forces known at every location

$$q_n = \frac{D_n}{h}$$

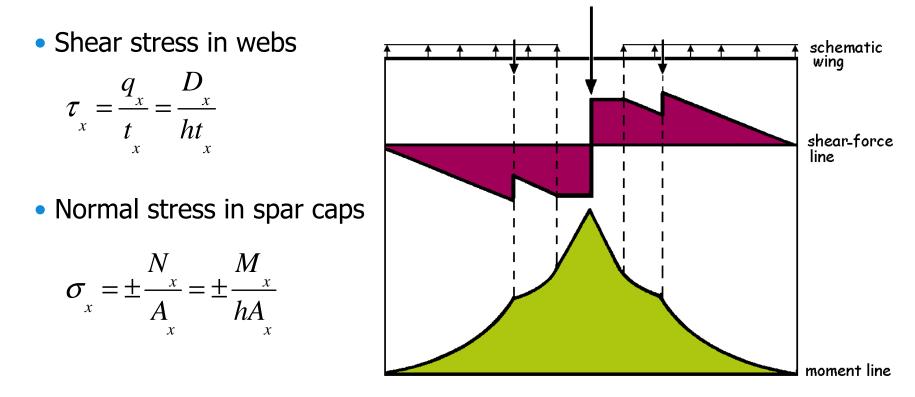
TUDelft



 Normal forces in caps known at every location

$$V = \frac{M}{h} \qquad \qquad M_{n+1} = \sum_{n=1}^{m} D_{n+1}$$

Wing structure Lift, engine and fuselage weight



• In a spar hA_x is called the moment of resistance (W)

Summary

Loads to stresses

- Three cases studied
 - Fuselage shell due to pressurization
 - Fuselage shells due to applied torsional load
 - Wing spars due to applied bending loads

