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Learning objectives

• Calculate the stresses in

• Fuselage shell due to pressurization (case I)

• Fuselage shells due to applied torsional load (case II)

• Wing spars due to applied bending loads (case III)

Student should be able to…
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Fuselage structure

• Revisit stresses in pressure vessel

• And the Hooke’s law for plane

stress or biaxial stress condition

Pressurization (case I)
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Fuselage structure

• With σcirc =2σlong this is

• For a metallic pressure vessel with ν ≈ 0.3 this means that

εcirc =4.25 εlong

Pressurization (case I)
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Fuselage structure

• For a sphere under pressure

• The strain in a sphere is equal in all directions

Pressurization (case I)
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Fuselage structure

• What ratio tsphere/tcylinder is needed to connect cylinder to sphere in a 

pressure vessel?

• Avoid discontinuities in εcirc to avoid these deformation mismatches

• Thus εcirc = εsphere !

Pressurization (case I)
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Fuselage structure

• Derivation

• Thus

• With Rcylinder = Rsphere this means tsphere ≈ 0.4 tcylinder

Pressurization (case I)
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Fuselage structure

• Aircraft pressure cabin

• Role frames & stringers (5 - 10%)

• Other disturbances (doublers around cut-outs)

• Fracture of fuselage could be disastrous: ‘exploding balloon’

• No limit load (formal definition: once in the lifetime of the aircraft), 

“limit” load occurs every flight during pressurization of the cabin

⇒ safety factor is 2

Pressurization (case I)
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Fuselage structure

• Aircraft pressure cabin

• Design pressure differential  pd = pcabin - ph

• Cabin altitude: pcabin related to altitude of 2400 - 3000 m

• Safety factor j=2:  pult = 2 pd = 2(pcabin - ph)

• Example

• Pressure differential is 45 kPa

• Aircraft altitude of h =9050 m  ⇒ cabin altitude of 2440 m

• Aircraft altitude of h =10350 m ⇒ cabin altitude of 3050 m

Pressurization (case I)
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Fuselage structure

• The axial stresses in a tube under torsion

Torsional loading (case II)
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Fuselage structure

• Function of cylinder against torsional loading 

• Rectangular shape

• Deforms like

• Equilibrium if F1d1 = F2d2 = Fndn

⇒ M1 = M2 = MT

Torsional loading (case II)  
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Fuselage structure

• Torsion causes shear stress & strain

• Equilibrium: τoutside = τcross section

Torsional loading (case II)
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Fuselage structure

• Torsion causes shear stress

• Equilibrium: τoutside = τcross section

• Torsional moment

• Define q = τ t   ⇒ MT = 2qA

Torsional loading (case II)
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Fuselage & wing structure

• Thin walled box, stringers not loaded, torsion moment MT

• Moment around an arbitrary point:

• with

• All ‘fractions’ together:
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Torsional loading (case II)
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Fuselage & wing structure

• For a thin walled closed box (enclosed area A) the shear flow is

• All cross sections 

have the same 

shear-flow q

• A torsion box does

not need to have a 

circular cross section

2
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A
=

enclosed area ≡ A

enclosed area ≡ A

enclosed area ≡ A

enclosed area ≡ A

Torsional loading (case II)
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Fuselage & wing structure

• The torsion box will not “function” at a cut-out

• A stiff frame with rigid corners around the cut-out is needed

Torsional loading (case II)
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Wing structure

• Consider elementary spar

• Diamond shaped deformation is resisted

by sheets

• Frame exercises a shear stress on the sheets

• As reaction: sheets exercise shear stress on the frame

• Assumption: bars of frame very stiff,

no deformation

• Without sheets: Frame is not functioning

Bending of wing spar



18Aircraft loads | 32

Wing structure

• If frame functions, sheets in equilibrium

• High forces: pleat formation

• However: Structure still functions !

• Resistance to shear is the resistance to tension and compression

under 45 degrees. Relationship: E, ν, G

Bending of wing spar
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• Break down the elements ⇒ book keeping

• Global

• Horizontal equilibrium: F - F1x - F2x = 0

• Vertical equilibrium: F1y - F2y = 0

• Moment equilibrium: F h + F1y w = 0

• Local

• Equilibrium in elements …

Wing structure
Bending of wing spar

F1y

F1x

F2y
F2x
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• Break down the elements ⇒ book keeping

• For shear there is physically no difference but we need a sign 

convention

Wing structure
Bending of wing spar

_ +
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Wing structure

• In bending, the function of spar webs (shear) is essential! The 

webs have to be supported on the upper and lower side by caps in

order to realize equilibrium

• webs transfer (external) transverse forces into shear-flows

• caps transfer shear-flows in normal forces

Bending of wing spar
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Wing structure

• Global equilibrium (always check!)

• Horizontal: √√√√

• Vertical: √√√√

• Moment: √√√√

Bending of wing spar
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Wing structure

• Web plate 1 and upper and lower cap 1

• Equilibrium of forces in cap 1

• q1 is shear flow in web plate 1

Bending of wing spar
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Wing structure

• Web plate 2 and upper and lower cap 2

• Equilibrium of forces in cap 2

Bending of wing spar
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Wing structure

• Web plate 3 and upper and lower cap 3

• Equilibrium of forces in cap 3

Bending of wing spar
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Wing structure

• Shear flow in the webs:

• Transverse force building up:

Bending of wing spar
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Wing structure

• Shear flow in the webs:

• Transverse force building up:

• Normal force in the caps at the location of stringers:

• What about normal forces in the caps between the stringers?

Bending of wing spar
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Wing structure

• Equilibrium in A:

• Equilibrium in B:

• Normal force increases linearly from outboard to inboard !

Bending of wing spar
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Wing structure

• The bending moment at location x in the spar is:

• We see that that for l2

• This is valid on every location x on the spar:

Bending of wing spar
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Wing structure

• External forces Fn

• Transverse shear forces known at

every location

• Normal forces in caps known at

every location

Bending of wing spar
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• Shear stress in webs

• Normal stress in spar caps

• In a spar hAx is called the moment of resistance (W)

Wing structure
Lift, engine and fuselage weight
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• Three cases studied

• Fuselage shell due to pressurization

• Fuselage shells due to applied torsional load

• Wing spars due to applied bending loads

Summary
Loads to stresses


