Flight and Orbital Mechanics

Lecture slides

Flight and Orbital Mechanics

Lecture hours 1,2 - Unsteady Climb
Mark Voskuijl

Semester 1-2012
TUDelft

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash Boeing 727 (1974)
- Analytical solution
- Example exam question
- Summary

Introduction
 Question

What is the most efficient way (minimum time) to go from take-off at sea-level to Mach 1.5 at 15,000 m?
A. Climb at airspeed for $\max \gamma$. At $15,000 \mathrm{~m}$ accelerate to Mach 2
B. Climb at airspeed for max RC. At $15,000 \mathrm{~m}$ accelerate to Mach 2

 Dedelébated climb to 15,000 m, Mach 1.5
D. Accelerate at sea-level to Mach 1.5, climb to $15,000 \mathrm{~m}$ at airspeed for max RC

Introduction
 Solution

Introduction

Difference with AE1102 - Flight mechanics

Typical problem AE1102

- What is the maximum rate of climb of Aircraft X at a given altitude?

Typical problem AE2104

- What is the minimum time to climb from altitude A to altitude B for Aircraft X?

Introduction
 Difference with AE1102 - Flight mechanics

Point performance versus Path performance

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727
- Analytical solution
- Example exam question
- Summary

How does a pilot perform a climb?

Flight Planning Guide

(Unit 550-0557 and On)

Cessna Aircraft Company
Citation Marketing Division
P.O. Box 7706

Wichita, Kansas 67277

How does a pilot perform a climb?

MAXIMUM RATE CLIMB PERFORMANCE

190 KIAS at Sea Level Time, Distance and Fuel Standard Day								
$\begin{aligned} & \text { T.O. Wt. } \\ & \times 1,000 \mathrm{Lbs} . \end{aligned}$	13.3	12.5	11.5	10.5	13.3	12.5	11.5	10.5
Pressure								
Altitude		5,000	Feet					
Min.	2	2	2	2	4	10,000 4	Feet	3
N.M.	5	5	4	3	11	10	8	7
Lbs.	63	58	52	48	125	116	105	95
Pressure								
Altitude		15,000	Feet			21,000		
Min.	6	5	5	4	8	-8	7	6
N.M.	18	16	14	12	28.	25	22	19
Lbs.	188	174	158	142	267	246	222	200
Pressure								
Altitude		25,000	Feet			29,000		
Min.	11	10	9	8	14	13	11	10
N.M.	37	33	28	24	49	43	37	32
Lbs.	324	297	267	240	387	353	316	282

How does a pilot perform a climb?

How does a pilot perform a climb? Airspeed indicator

How does a pilot perform a climb? Airspeed indicator

For low Mach numbers:
$p_{t}-p_{s}=\frac{1}{2} \rho V^{2}$
One equation, two unknowns... assume sea level conditions:
$p_{t}-p_{s}=\frac{1}{2} \rho_{0} V_{E}^{2}$
Relationship true airspeed - equivalent airspeed:
$\frac{1}{2} \rho V^{2}=\frac{1}{2} \rho_{0} V_{E}^{2} \Rightarrow V=\sqrt{\frac{\rho_{0}}{\rho}} V_{E}$
The indicated airspeed is almost the same as the equivalent airspeed (instrument errors)
$V_{E} \approx V_{I}$

Large difference!!!

How does a pilot perform a climb Summary

- Climb at constant indicated airspeed and constant power setting
- True airspeed is therefore increasing
- The climb is unsteady

$$
\frac{d V}{d t} \neq 0
$$

Typical climb profile

Conclusion: very faint curvature; the climb is almost a straight line So, the climb is quasi-rectilinear

$$
\frac{d \gamma}{d t} \approx 0
$$

Summary

- A typical climb is performed at constant indicated airspeed and at a constant power setting. Therefore, the true airspeed is actually increasing. Since airspeed is not constant, it is an unsteady climbing flight
- The climb is almost a straight line. It is therefore a quasi-rectilinear flight

$$
\frac{d V}{d t} \neq 0
$$

$$
\frac{d \gamma}{d t} \approx 0
$$

Is this a problem?

- Pilot flies at minimum airspeed

$$
V_{\min }=\sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L_{\max }}}}
$$

- Minimum airspeed depends on altitude
- Equation for minimum equivalent airspeed

$$
V_{e, \min }=\sqrt{\frac{\rho}{\rho_{0}}} V_{\min }
$$

- Minimum airspeed seen by pilot is independent of altitude!

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727, 1974
- Analytical solution
- Example exam question
- Summary

Equations of motion

Free Body Diagram

Kinetic Diagram

$\uparrow m V \frac{d \gamma}{d t}$

Reminder:

a Angle of attack; angle between aircraft body axis and airspeed
γ Flight path angle; angle between airspeed vector and horizon
θ Pitch attitude; angle between horizon and aircraft body axis
Lift is by definition perpendicular to airspeed
Drag is parallel to the airspeed
Thrust is fixed to the aircraft and therefore has an angle of attack α_{T} with respect to the airspeed

Equations of motion

$\vec{F}=m \vec{a}$
$\begin{array}{ll} & =1 \\ \sum F_{I / V}: \not \subset \cos \alpha_{T}-D-W \sin \gamma=m \frac{d V}{d t}\end{array}$
$=1=0$
$\sum F_{\perp V}: L-W / \cos \gamma+T \sin \alpha_{T}=m V \frac{d t}{d t} \cong 0$
Unsteady quasi-rectilinear climbing flight
Extra assumption: $\quad \alpha_{T}=0$, Approximation:
$\cos \gamma \cong 1, \sin \gamma \neq 0$

Equations of motion Unsteady climb

$$
\begin{aligned}
& T-D-W \sin \gamma=m \frac{d V}{d t} \\
& L=W
\end{aligned}
$$

Rewrite to power equation by multiplying with airspeed
$T V-D V-W V \sin \gamma=m V \frac{d V}{d t}$
$P_{a}-P_{r}=\frac{W}{g} V \frac{d V}{d t}+W \frac{d H}{d t}$

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727, 1974
- Analytical solution
- Example exam question
- Summary

Story - Crash Boeing 727, 1974

TUDelft

Story - Crash Boeing 727, 1974

- B727 Northwest Orient
- 1 Dec 1974
- Flight J.F. Kennedy Airport - Buffalo
- Checklist: Pitot heaters off
- 16000 ft IAS $=305 \mathrm{kts} \quad \mathrm{RC}=2500 \mathrm{ft} / \mathrm{min}$
- $>16000 \mathrm{ft}$ IAS $>340 \mathrm{kts} \mathrm{RC}=5000 \mathrm{ft} / \mathrm{min}$
- Comment pilot "We `re light"

Story - Crash Boeing 727, 1974

- 23000 ft IAS $=405 \mathrm{kts} \mathrm{RC}=6500 \mathrm{ft} / \mathrm{min}$
- Overspeed horn: "Pull back and let her climb"
- Stick shaker: "Mach Buffet"
"Guess we'll have to pull her up further"
- 24800 ft stall @ $\theta=30^{\circ}$
- Still pulling \rightarrow Deep stall
- Horizontal stabiliser damaged

Story - Crash Boeing 727, 1974

TUDelft

Story - Crash Boeing 727, 1974

Diagram of Boeing 727's nose area, showing position of external sensors for pitot-static and stall warning systems. The stall warning transducer is a pivoting miniature aerofoil which responds to the angle of airflow past either side of the aircraft's nose. (Matthew Tesch)

Story - Crash Boeing 727, 1974

Schematic diagram of typical pitot-static system driving an aircratt's altimeter, vertical speed indicator and airspeed indicator. Blockage of the pitot head by ice would have a negligible effect on altimeter readings as this instrument senses static pressure only.

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727, 1974
- Analytical solution

- Example exam question
- Summary

Analytical solution

What is the difference between the climb performance in steady flight and in unsteady flight?

Analytical solution

Steady Climb

Equation of motion // V
$0=T-D-W \sin \gamma$
Multiply with airspeed
$0=P_{a}-P_{r}-W V \sin \gamma$
$\frac{P_{a}-P_{r}}{W}=V \sin \gamma=R C_{s t}$
$R C_{s t}=\frac{P_{a}-P_{r}}{W}$

Unsteady climb

Equation of motion // V
$\frac{W}{g} \frac{d V}{d t}=T-D-W \sin \gamma$
Multiply with airspeed
$\frac{W}{g} V \frac{d V}{d t}=P_{a}-P_{r}-W V \sin \gamma$
$\frac{P_{a}-P_{r}}{W}=V \sin \gamma+\frac{V}{g} \frac{d V}{d t}$
$R C_{s t}=R C+\frac{V}{g} \frac{d V}{d t}$
Intermezzo
$\frac{V}{g} \frac{d V}{d t}=\frac{V}{g} \frac{d V}{d h} \frac{d h}{d t}$

Analytical solution

Unsteady climb continued
$R C_{s t}=R C+\frac{V}{g} \frac{d V}{d h} R C$
result

$$
\frac{R C}{R C_{s t}}=\frac{1}{1+\frac{V}{g} \frac{d V}{d h}}
$$

What does this actually mean physically?

Analytical solution

- The excess power is partially used to accelerate (kinetic energy) and partially to climb (potential energy)
- The rate of climb in an unsteady climb is therefore smaller than in a steady climb.

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727, 1974
- Analytical solution

- Example exam question
- Summary

Example exam question

An aircraft carries out a quasi-rectilinear symmetrical climbing flight at constant EAS in the troposphere of the ISA

Calculate at flight altitude $\mathrm{H}=10 \mathrm{~km}$ the ratio between the actual rate of climb in the unsteady climbing flight and the rate of climb in the steady climbing flight at an instantaneous Mach number of $M=0.8$ (attention M is not constant)

Carefully derive the "kinetic energy correction factor" for this flight using the equations of motion in unsteady flight.
Given for the troposphere (ISA): $\quad \rho=\rho_{0}\left[1+\frac{\lambda H}{T_{0}}\right]^{-\left(\frac{g_{0}}{R \lambda}+1\right)} ; \quad d p=-\rho g_{0} d H ; \quad p=\rho R T$

$$
\frac{d T}{d H}=-0.0065[\mathrm{~K} / \mathrm{m}]
$$

Solution (1/2)

$\frac{R C}{R C_{s t}}=\frac{1}{1+\frac{V}{g_{0}} \frac{d V}{d H}}$

In an exam you will be most likely be asked to derive this ratio first by deriving the equations of motion

Constant equivalent airspeed
$V=V_{E} \sqrt{\frac{\rho_{0}}{\rho}} \quad \Rightarrow 1+\frac{V}{g_{0}} \frac{d V}{d H}$

ospheric properties
Gas law:
$p=\rho R T$
$\frac{d\left(\frac{\rho_{0}}{\rho}\right)}{d H}=\frac{d\left(\frac{\rho_{0} R T}{p}\right)}{d H}$
Hydrostatic equation
$\frac{d p}{d H}=-\rho g_{0}$
$\frac{d\left(\frac{\rho_{0}}{\rho}\right)}{d H}=\frac{\rho_{0} R}{p} \frac{d T}{d H}+\frac{\rho_{0} g_{0}}{p}$

Solution (2/2)

So the correction factor becomes
$1+\frac{\mathrm{V}_{\mathrm{E}}^{2}}{2 \mathrm{~g}} \rho_{0}\left[\frac{R}{p} \frac{d T}{d H}+\frac{g_{0}}{p}\right]=1+\frac{\mathrm{V}_{\mathrm{E}}^{2}}{2} \frac{\rho_{0}}{p}\left[\frac{R}{g_{0}} \frac{d T}{d H}+1\right]$
Instantaneous Mach number is given; so rewrite:
$V_{E}^{2}=V^{2} \frac{\rho}{\rho_{0}}=M^{2} \gamma R T \frac{\rho}{\rho_{0}}=M^{2} \gamma p \frac{1}{\rho_{0}}$
$1+\frac{\mathrm{V}_{\mathrm{E}}^{2}}{2} \frac{\rho_{0}}{p}\left[\frac{R}{g_{0}} \frac{d T}{d H}+1\right]=1+\frac{M^{2} \gamma}{2}\left[\frac{R}{g_{0}} \frac{d T}{d H}+1\right]$
Fill in the given values:
$1+\frac{M^{2} \gamma}{2}\left[\frac{R}{g} \frac{d T}{d H}+1\right]=1+\frac{0.8^{2} \cdot 1.4}{2}\left[\frac{287.05}{9.81} \cdot-0.0065+1\right]=1.36$
$\frac{R C}{R C_{s t}}=\frac{1}{1.36}=0.73$
So, the actual rate of climb in an unsteady climb is actually only 73% of the maximum achievable rate of climb in steady flight (for this flight condition)

Content

- Introduction
- How does a pilot perform a climb?
- Equations of motion
- Story - Crash B727, 1974
- Analytical solution
- Example exam question
- Summary

Summary

- A typical climb is performed at constant indicated airspeed and at a constant power setting. Therefore, the true airspeed is actually increasing. Since airspeed is not constant, it is an unsteady climbing flight
- The climb is almost a straight line. It is therefore a quasi-rectilinear flight
- Corresponding equations of motion: $\begin{aligned} & T-D-W \sin \gamma=m \frac{d V}{d t} \\ & L=W\end{aligned}$

Summary

- The rate of climb in an unsteady climb is smaller than in a steady climb because part of the excess energy is used to accelerate

$$
\frac{R C}{R C_{s t}}=\frac{1}{1+\frac{V}{g} \frac{d V}{d h}} ; \quad \frac{d V}{d h}>0
$$

- You must be able to derive this ratio from the equations of motion
- You must be able to calculate this ratio (see example exam question)
- For more background information: read Ruijgrok - Elements of airplane performance section 14.2

Questions?

