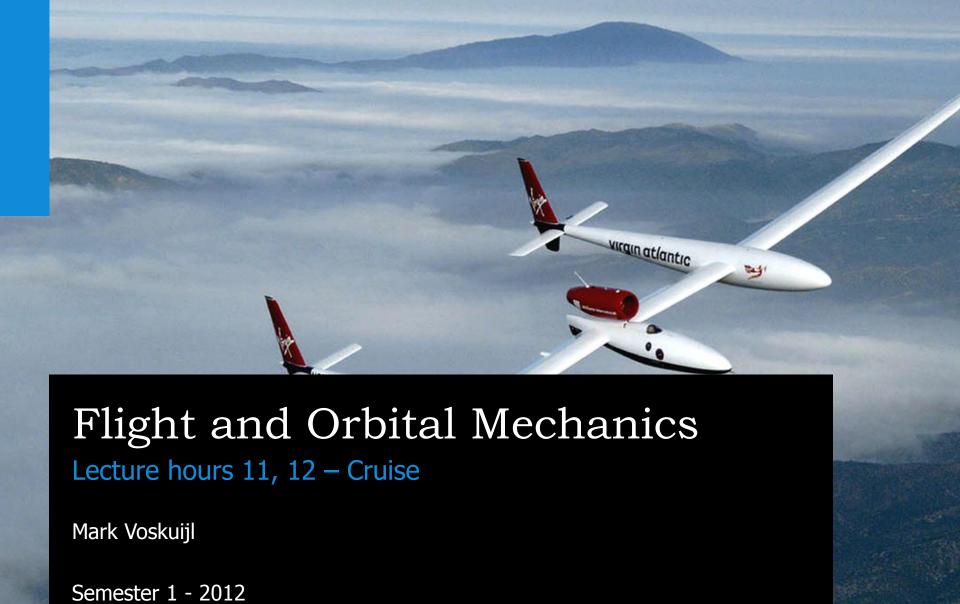
Flight and Orbital Mechanics

Lecture slides



Delft University of Technology

Content

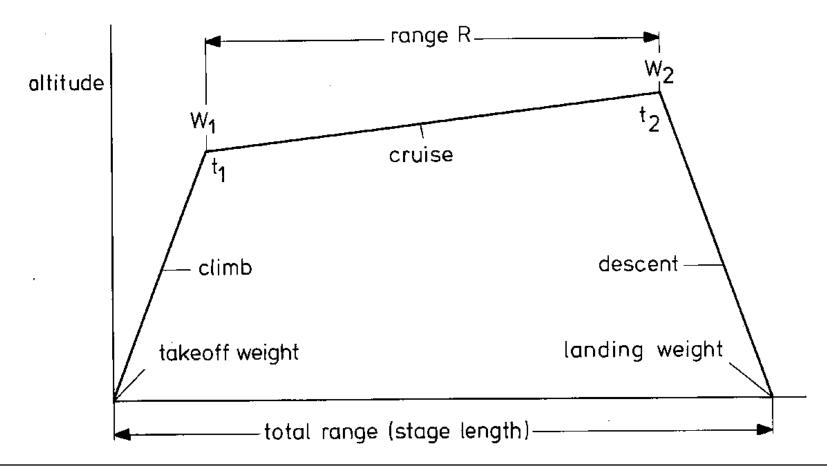
- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

Content

Introduction

- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

Typical cruise flight



Objective

- Range (distance)
- Endurance (Maximum time)

Equations of motion

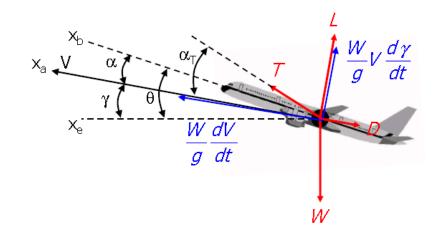
General 2D equations of motion and power equation

Unsteady curved symmetric flight

$$T\cos\alpha_{T} - D - W\sin\gamma = \frac{W}{g} \frac{dV}{dt}$$

$$L - W\cos\gamma + T\sin\alpha_{T} = \frac{W}{g} V \frac{d\gamma}{dt}$$

$$\frac{P_{a} - P_{r}}{W} = RC + \frac{V}{g} \frac{dV}{dt}$$



Cruise flight

Quasi steady (dV/dt \cong 0), quasi-rectilinear, (d γ /dt \cong 0)

Weight of the aircraft is **not constant**

Small flight path angle $\rightarrow \cos \gamma = 1$, $\sin \gamma \neq 0$

Assume that the thrust vector acts in the direction of flight ($\alpha_T \cong 0$)

Equations of motion Equations of motion cruise flight

$$0 = \frac{g}{W} (T - D - W \sin \gamma)$$

$$L = W$$
 (quasi rectilinear)

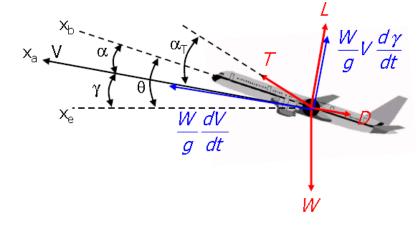
Additional equation

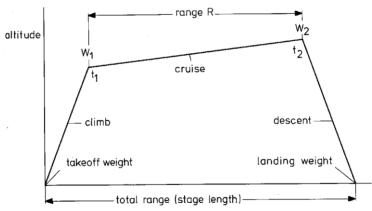
$$\frac{dW}{dt} = -F(\Gamma, V, H)$$

Kinematic equations

$$\frac{ds}{dt} = V \cos \gamma$$

$$\frac{dH}{dt} = V \sin \gamma$$



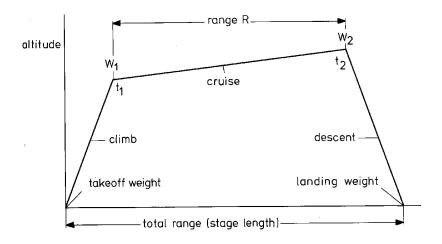


Problem definition

Pilot can choose a certain airspeed and altitude: H(t), V(t)

What is the best flight condition?

- 1. Optimal initial conditions (V, H at initial weight)
- 2. Optimal flying strategy (V, H at decreasing weight)



Criteria for optimal flight

1. Maximum endurance E: Fuel flow F_{min} at every point in time

2. Maximum range R: Specific range $(V/F)_{max}$ at every point in time

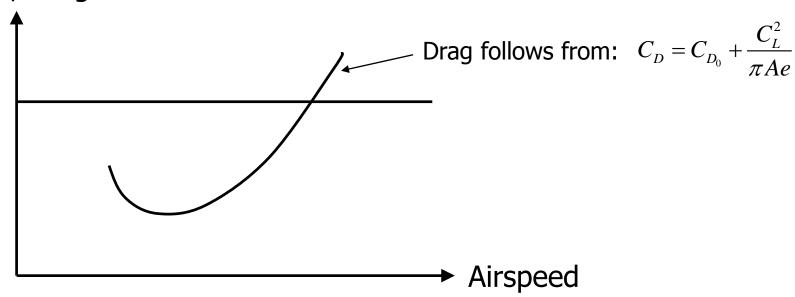
3. Given range, minimum fuel: Specific range (V/F)_{max} at every point in time

Content

- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

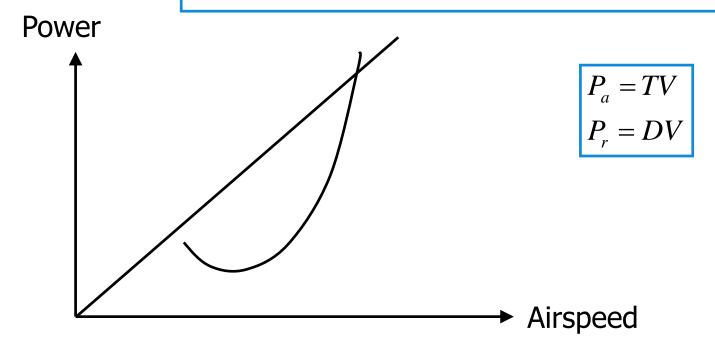
Performance diagram - Jet

For basic flight mechanics applications, **thrust** of a **turbojet** can be assumed to be **constant with airspeed** for a given flight altitude



Performance diagram - Jet

For basic flight mechanics applications, **thrust** of a **turbojet** can be assumed to be **constant with airspeed** for a given flight altitude



Thrust specific fuel consumption

$$F \square c_T T$$

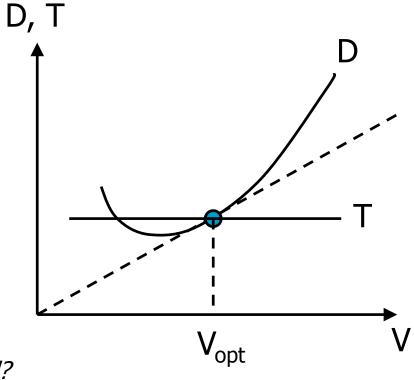
Additional assumption: c_T constant

Specific range

$$\frac{V}{F} = \frac{V}{c_T T} = \frac{V}{c_T D}$$

$$\left(\frac{V}{F}\right)_{\text{max}}$$
 if $\left(\frac{D}{V}\right)_{\text{min}}$

What is the corresponding airspeed?



Optimal airspeed for given altitude and weight

Method to calculate the best airspeed

Optimum Lift over drag Angle of Airspeed criterion ratio attack (for given H,W) $C_{L}^{X}/C_{D}^{Y} \longrightarrow C_{L} \qquad V$

Airspeed

1. Optimum criterion

$$\left(\frac{D}{V}\right)_{\min} \Rightarrow \left(\frac{V}{D}\right)_{\max}$$

2. Airspeed

$$L = W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}}$$

3. Drag

$$D = \frac{L}{L}D = \frac{C_D}{C_L}W$$

4. Ratio

$$\frac{V}{D} = \frac{\sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}}}{\binom{C_D}{C_L}W} = \sqrt{\frac{1}{W \cdot S} \frac{2}{\rho} \frac{C_L}{C_D^2}}$$

5. For a given weight

$$\frac{V}{D} \propto \sqrt{\frac{C_L}{C_D^2} \cdot \frac{1}{
ho}}$$

6. Angle of attack for given altitude

$$\left(\frac{V}{D}\right)_{\max} \Rightarrow \left(\frac{C_L}{C_D^2}\right)_{\max}$$

Airspeed

Airspeed for given altitude and weight

$$L = W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L,opt}}}$$

First year:

$$\left(\frac{C_L}{C_D^2}\right)_{\text{max}} \Rightarrow \frac{d}{dC_L} \left(\frac{C_L}{C_D^2}\right) = 0$$

$$\frac{C_L \cdot 2C_D \frac{dC_D}{dC_L} - C_D^2 \cdot 1}{C_D^4} = 0$$

$$\frac{dC_D}{dC_L} = \frac{2C_L}{\pi A e}$$

$$C_D^4 \neq 0$$

$$\frac{2C_L}{\pi A e} = \frac{1}{2} \frac{C_D}{C_L} = \frac{1}{2} \frac{C_{D_0} + \frac{C_L^2}{\pi A e}}{C_L}$$

$$C_L = \sqrt{\frac{1}{3} C_{D_0} \pi A e}$$

Example question

Question 1 - Cruise flight

The Gulfstream IV, indicated in Figure 1 is a twin-turbofan executive transport aircraft. Data for this air craft are given below:

$$S = 88.3 \text{ [m}^2\text{]}$$

 $b = 23.7 \text{ [m]}$
 $A = 6.36 \text{ [-]}$
 $e = 0.67 \text{ [-]}$
 $C_{D_a} = 0.015 \text{ [-]}$
 $C_D = C_{D_a} + \frac{C_L^2}{\pi A e}$

Figure 1: Gulfstream IV

For jet aircraft, fuel consumption can be represented with the following equation:

$$F = c_T T$$

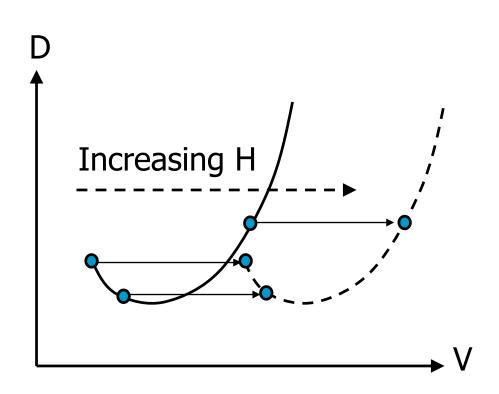
Aircraft Weight W = 300.000 [N] (start of cruise)

What is the best airspeed to fly (for max range) at 9000 [m] altitude? $(\rho = 0.4663 [kg/m^3], T = 229.65 [K])$

Content

- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

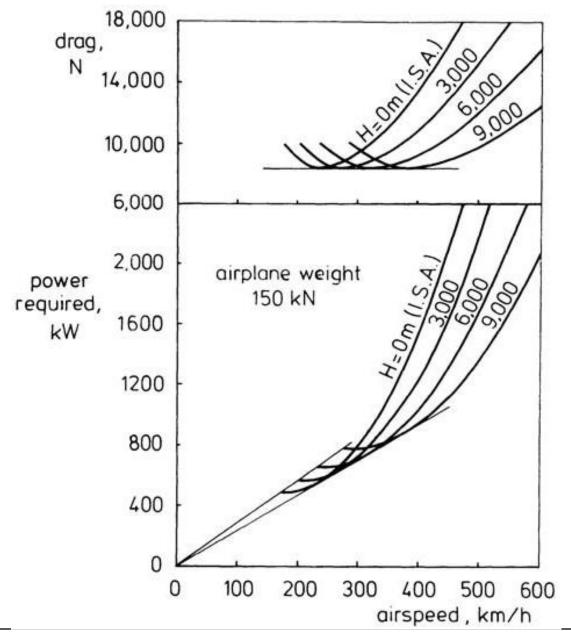
Performance diagram



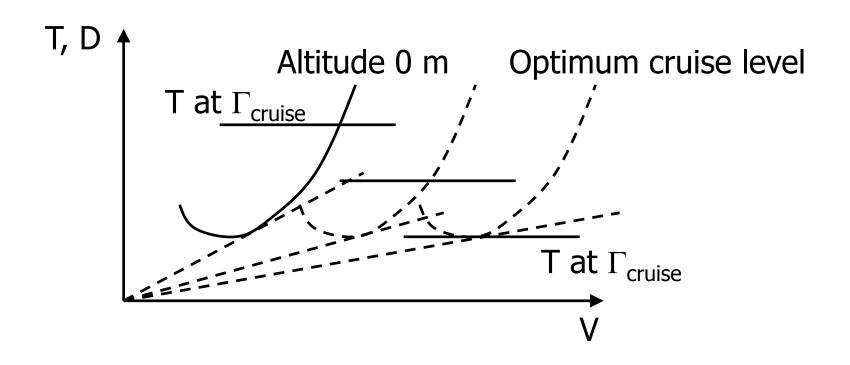
Angle of attack is constant for a given point on the drag curve

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_L}} \propto \frac{1}{\sqrt{\rho}}$$

$$D = \frac{C_D}{C_L} W \propto \rho^0$$



Specific range

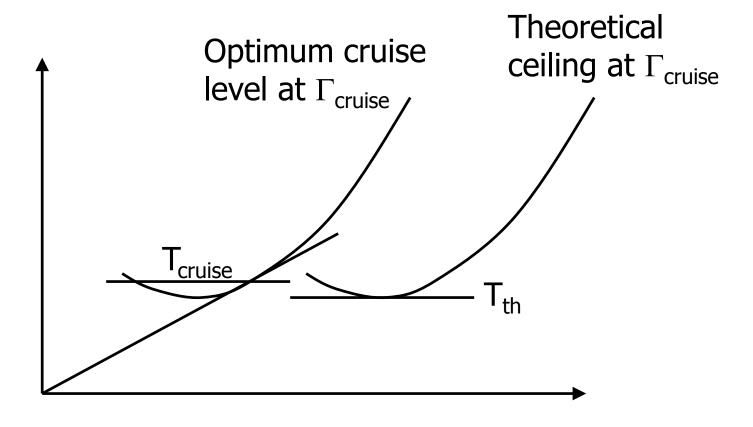


Conclusion

At increasing altitude:

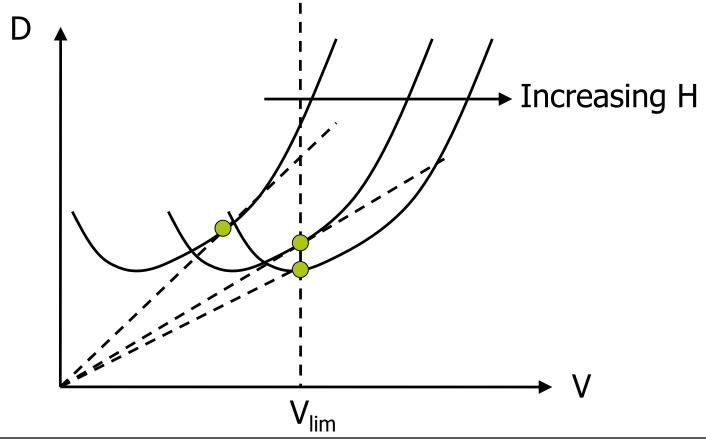
- V/F increases
- V increases
- Engine more efficient

Thus: **fly as high as possible!** (up to the limits of the engine)



$$H_{cr} < H_{th}$$
 (at Γ_{cruise})
Optimum $H_{cr} \approx H_{s}$ (service ceiling)

In the presence of speed limits (e.g. M_{MO})



In the presence of speed limits (e.g. M_{MO})

Optimum V/F at V = V_{lim}

$$D_{\min} \Rightarrow \left(\frac{C_L}{C_D}\right)_{\max} \Rightarrow C_L = \sqrt{C_{D_0} \pi A e}$$

First year:

$$\left(\frac{C_{L}}{C_{D}}\right)_{\text{max}} \Rightarrow \frac{d}{dC_{L}} \left(\frac{C_{L}}{C_{D}}\right) = 0$$

$$\frac{C_{L} \cdot \frac{dC_{D}}{dC_{L}} - C_{D} \cdot 1}{C_{D}^{2}} = 0$$

$$\frac{dC_{D}}{dC_{L}} = \frac{2C_{L}}{\pi Ae}$$

$$C_{D}^{2} \neq 0$$

$$\frac{2C_{L}}{\pi Ae} = \frac{C_{D}}{C_{L}} = \frac{C_{D_{0}} + \frac{C_{L}^{2}}{\pi Ae}}{C_{L}}$$

$$C_{L} = \sqrt{C_{D_{0}} \pi Ae}$$

Summary – Jet aircraft

- Choose V such that $(V/F)_{max} \rightarrow (C_L / C_D^2)_{max}$
- H as high as possible (limited by the engine)
- If the speed limit is reached at lower altitude:
 - $V = V_{lim}$
 - H is such that C_L / C_D is max

Content

Introduction

- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

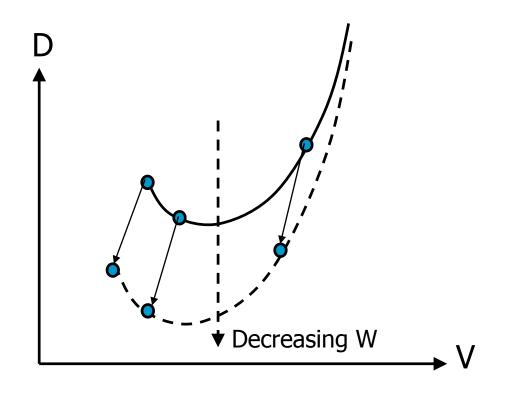
Effect of weight

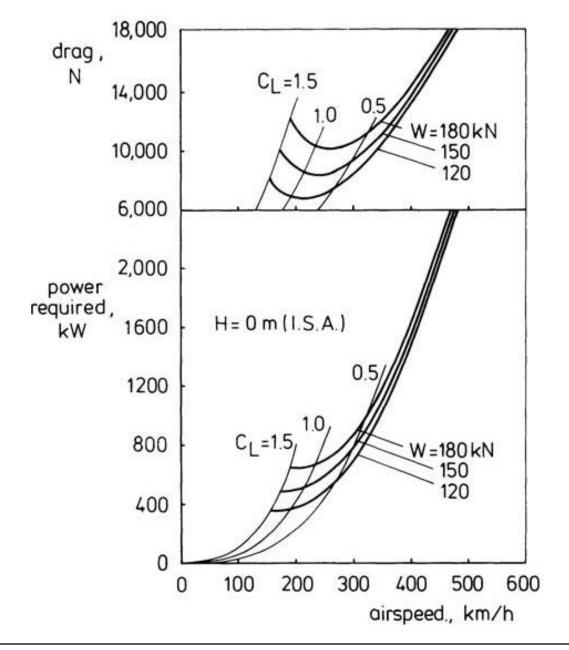
$$\begin{cases} V = \sqrt{\frac{W}{S}} \frac{2}{\rho} \frac{1}{C_L} \propto \sqrt{W} \\ D = \frac{C_D}{C_L} W \propto W \\ P_r = DV \propto W \sqrt{W} \end{cases}$$

 \Rightarrow

 $D \propto V^2$ at constant α

 $P_r \propto V^3$ at constant α

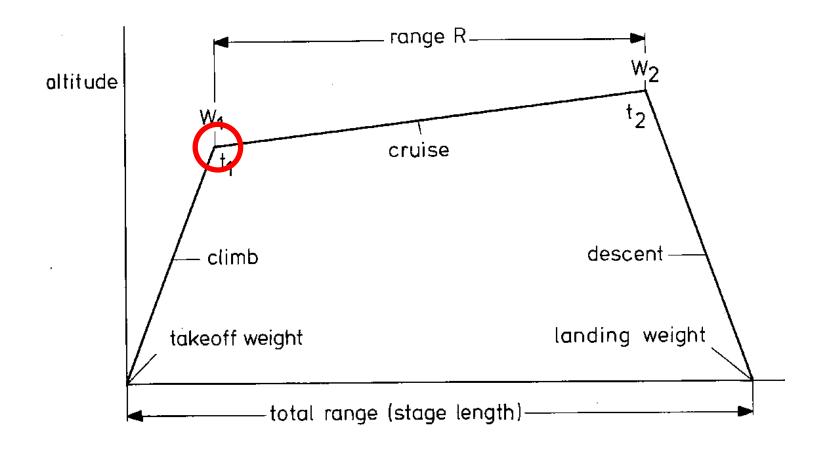




Content

Introduction

- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

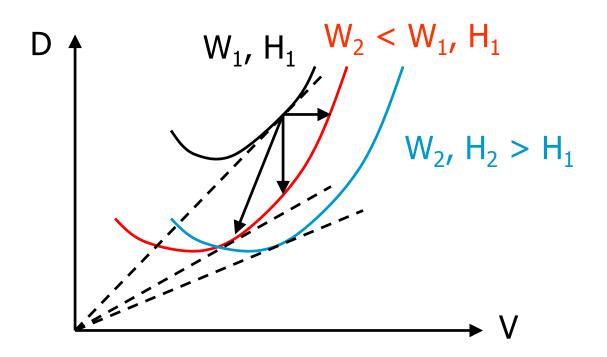


Strategies:

I: constant altitude and engine setting

II: constant altitude and airspeed

III: constant angle of attack



Constant altitude

- I. $\Gamma = \text{constant: } (V/F) << (V/F)_{\text{opt}} \text{ but } V \uparrow$
- II. $V = constant (V/F) < (V/F)_{opt}$
- III. $\alpha = \text{constant}, V \downarrow \text{but} (V/F) = (V/F)_{\text{opt}}$

Climb

- IV. $\alpha = \text{constant}$, V = constant, $(V/F) = (V/F)_{\text{opt}}$, even $> (V/F)_0$
- V. α = constant, changing V?

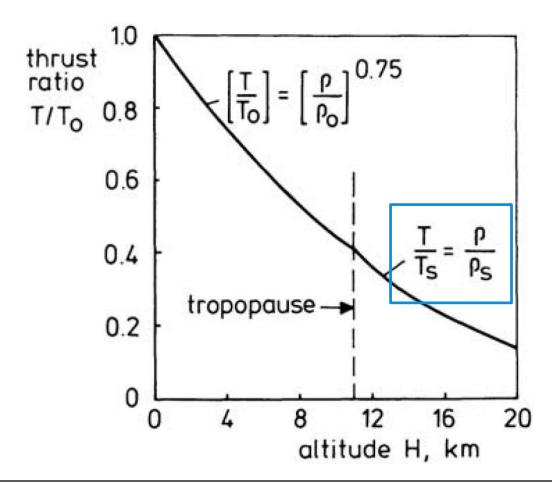
Optimum cruise climb possible?

Strategy IV $\rightarrow \alpha_2 = \alpha_1$ (C_L is constant) and V₂ = V₁

$$V_1 = \sqrt{\frac{W_1}{S} \frac{2}{\rho_1} \frac{1}{C_L}}$$

Is this possible? Are the engines capable of providing enough thrust at higher altitude and lower weight?

Typical turbojet performance



Optimum cruise climb possible?

Strategy IV
$$\rightarrow \alpha_2 = \alpha_1$$
 (C_L is constant) and V₂ = V₁

$$\frac{W}{\rho}$$
 = constant

- This is exactly how a typical turbojet behaves above 11km. So there will be enough thrust.
- Strategy V is not feasible
- Below 11km there will be enough thrust as well

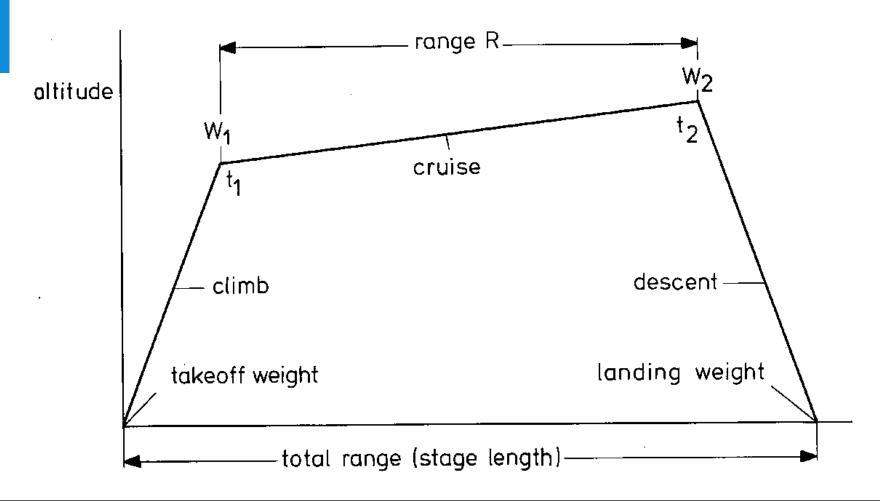
Optimum cruise climb possible?

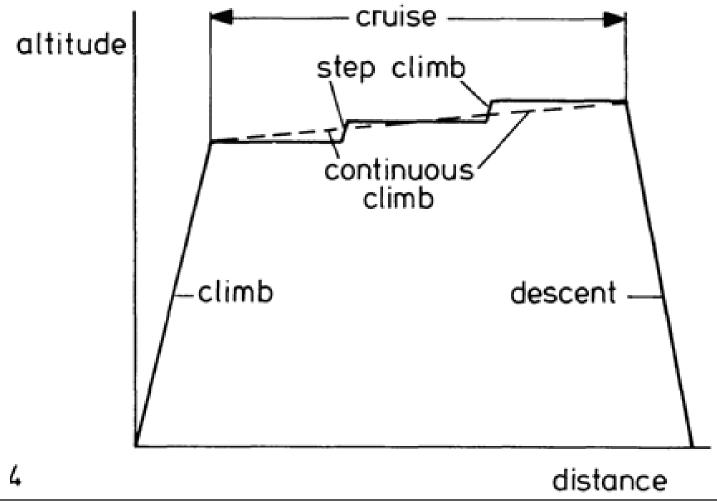
Strategy IV $\rightarrow \alpha_2 = \alpha_1$ (C_L is constant) and V₂ = V₁

The engines can provide just enough thrust (strategy V not possible)

What happens in case of M_{lim} ?

Mach number is constant at constant airspeed above 11km → No problem





Content

Introduction

- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

Breguet range equation

Range

$$\frac{dW}{dt} = \frac{dW}{ds}V = -F$$

$$R = \int_{s_0}^{s_1} ds = \int_{W_1}^{W_0} \frac{V}{F} dW$$

Breguet range equation for jet aircraft

 Jet aircraft optimum climb cruise (α, V and c_T are constant during variation of W

$$R = \int_{W_1}^{W_0} \frac{V}{F} dW$$

$$R = \int_{W_1}^{W_0} \frac{V}{c_T D} dW$$

$$R = \int_{W_1}^{W_0} \frac{V}{c_T} \frac{C_L}{C_D} \frac{dW}{W}$$

$$R = \frac{V}{c_T} \frac{C_L}{C_D} \int_{W_1}^{W_0} \frac{dW}{W}$$

$$R = \frac{V}{c_T} \frac{C_L}{C_D} \ln \left(\frac{W_0}{W_1} \right)$$

Breguet range equation for jet aircraft

$$R = \frac{V}{c_T} \frac{C_L}{C_D} \ln \left(\frac{W_0}{W_1} \right)$$

- If V is not limited: R_{max} at $(V C_L / C_D)_{max} \rightarrow (C_L / C_D^2)_{max}$ and ρ_{min}
- If V is limited: R_{max} at V = V_{lim} and ρ such that $(C_L / C_D)_{max}$

Breguet range equation for propeller aircraft

$$F = c_p P_{br}$$

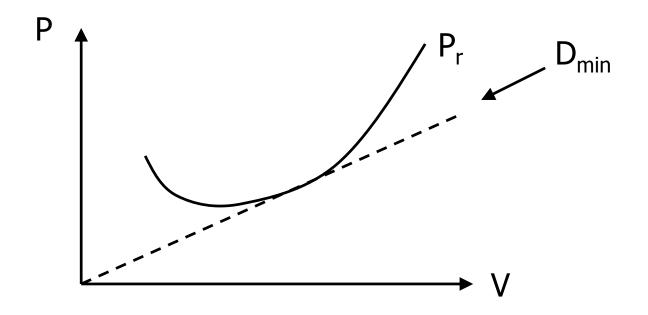
$$\frac{V}{F} = \frac{\eta_j}{c_p} \frac{1}{T}$$

Cruise flight with constant α , c_p and η_j :

$$R = \int_{W_1}^{W_0} \frac{V}{F} dW$$

$$R = \frac{\eta_j}{c_p} \frac{C_L}{C_D} \ln \left(\frac{W_0}{W_1} \right)$$

Breguet range equation for propeller aircraft



Conclusion: Altitude is not important w.r.t V/F But V is larger at high altitude

Unified Breguet range equation

Jet aircraft

$$\eta_{tot} = \frac{TV}{H\frac{F}{g}}$$

Propeller aircraft

$$\eta_{tot} = \frac{TV}{H \frac{F}{g}}$$

Analytic equations

Unified Breguet range equation

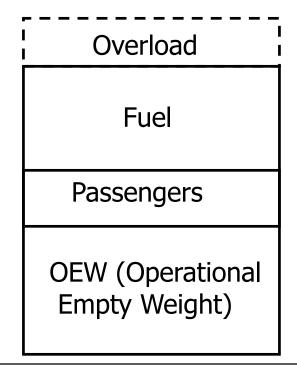
Time	1920	Lindbergh	Present
Н	43000 kJ/kg	43000 kJ/kg	43000 kJ/kg
η_{tot}	0.20	0.20 - 0.30	>0.40
L/D	10	11	16-18
W ₁ /W ₀	0.6 - 0.7	0.5	0.5

Content

- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

History

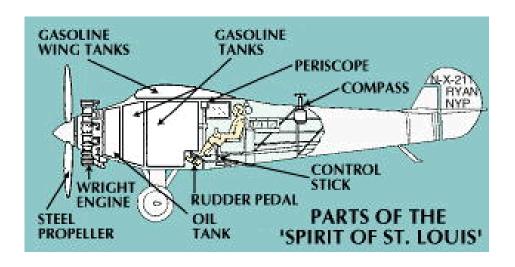
- 1919: Alcock / Brown: Newfoundland → Ireland
- Fonck, Nungesser/Coli, Lindbergh: New York → Paris



- Structural safety factor
- Take off length (W²)
- Climb gradient after take off
- Tailwind west → east

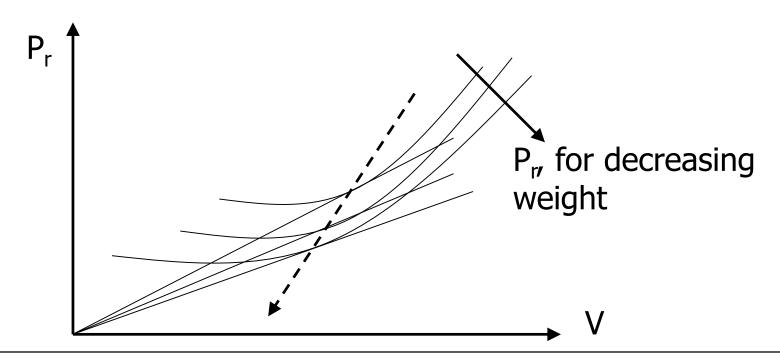
Spirit of St. Louis

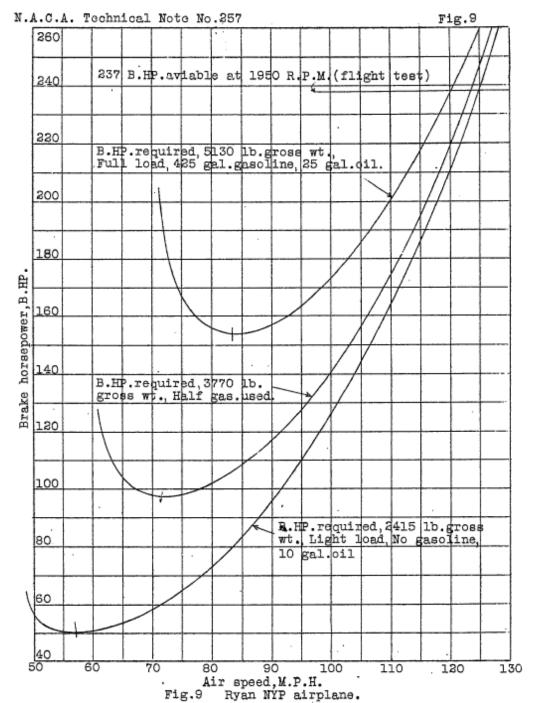
- Charles Lindbergh, 1927
- First solo, nonstop flight across the Atlantic Ocean



Spirit of St. Louis

Charles Lindbergh had to decrease airspeed to achieve maximum range





52

Story Global flyer

Steve Fossett

Global flyer

- First part of flight: insufficient strength to withstand gusts
- Best glide ratio: 1:37
 - $(C_L / C_D)_{max} = 37$
 - $C_{D0} = 0.018 e = 0.85$
- $H_{cr} = 45000 \text{ ft} = 13.716 \text{ m} \rightarrow \rho = 0.2377$
- Distance flown 38000 km
- Time 66 hrs
- Fuel lost 2600 lbs → actual fuel fraction 71%

Global flyer

• (V/F)_{max}:
$$C_L = \sqrt{\frac{1}{3}C_{D_0}\pi Ae} = 0.72$$

 $C_D = 0.024 \Rightarrow \frac{C_L}{C_D} = 30$

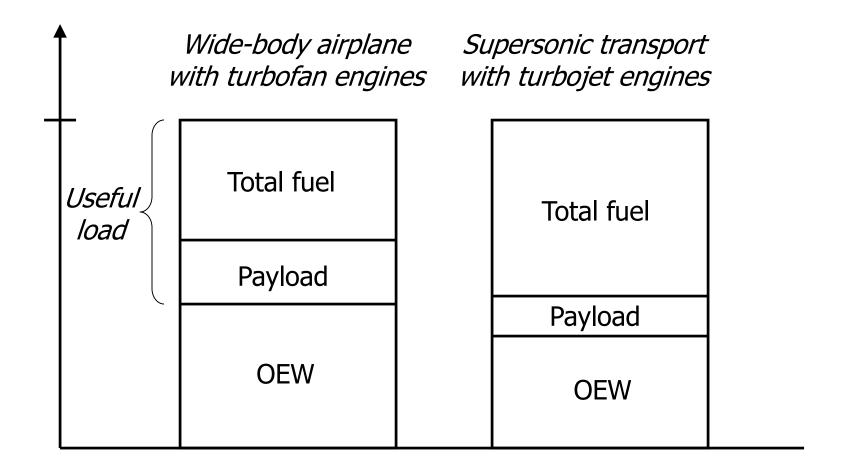
- V for $(V/F)_{max}$, 45000 ft, W_{aross} : V = 175 m/s
- Time for 40.000 km at constant V: 64 hrs
- Guesstimate of η_{tot}:
 - High bypass fans at 1000 km/h: $\eta_{tot} = 40\%$
 - Medium bypass fans η_{tot} = 35%, η_{th} = 50%, η_{j} = 70% \rightarrow V $_{j}$ / V = 1.86
- Correction for lower flight speed:
- Vj / V = 3 \rightarrow η_j = 0.5 \rightarrow η_{tot} = 25%
- Range in ideal climbing cruise: R = 53000 km

Global flyer

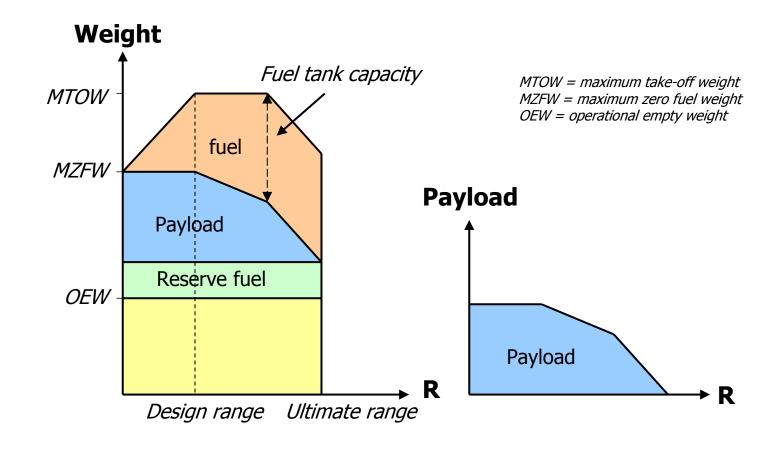
- Cruise at V = constant and $H_{cr} = constant$: R = 37.500 km
- At fuel fraction 70%: R = 28000 km
- Influence wind ?

Content

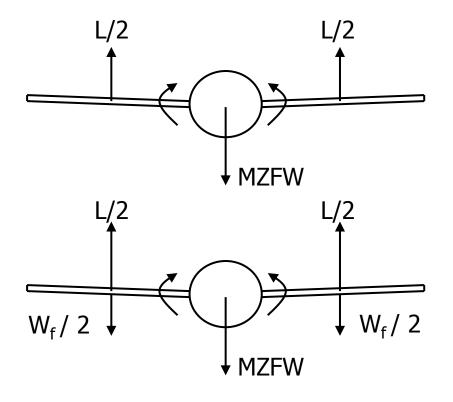
- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary



Payload range diagram



Maximum zero fuel weight



MZFW limited, amongst others by bending moment of the wing

MTOW > MZFW at same bending moment. MTOW limited e.g. by landing gear

Reserve fuel

- Reserve fuel
 - In general:
 - Fuel to alternate
 - 45 minutes holding at altitude
- Fuel shortage:
 - In general:
 - Management problem
 - CRM Cockpit resource management

Content

- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

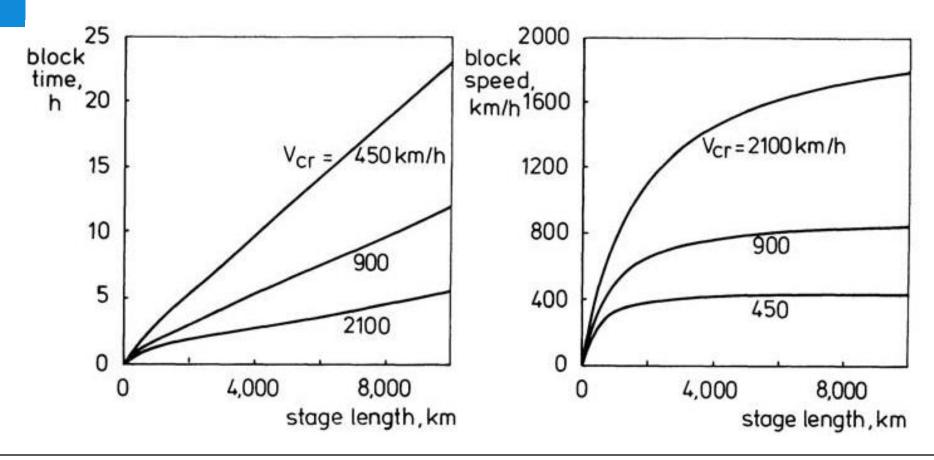
Economics

Block time and block speed

Key Parameters

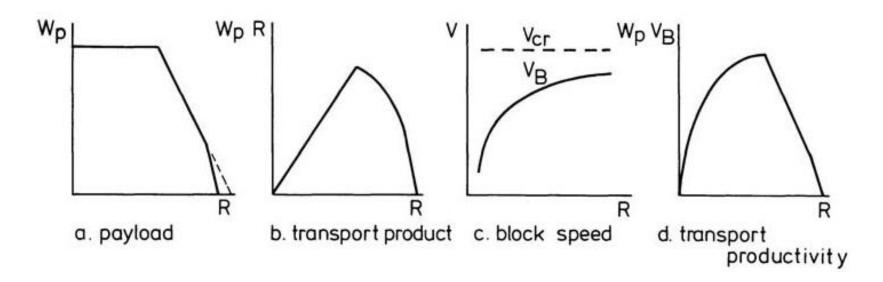
Range R Payload P Block time E_B Block speed V_B Transport product P_R Transport productivity P_h Revenue earning capacity P_v

Economics



Economics

Transport productivity



Conclusion:

Maximum transport productivity is achieved at the design range

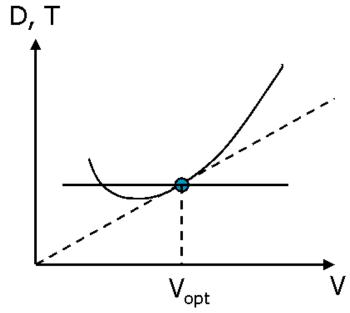
! Cost (direct operating cost) must be considered as well of course

Content

- Introduction
- Optimum cruise profile
 - Optimal airspeed for given H, W
 - Effect of altitude
 - Effect of weight
 - Best flying strategy
- Analytic Range equations
- Story
- Weight breakdown
- Economics
- Summary

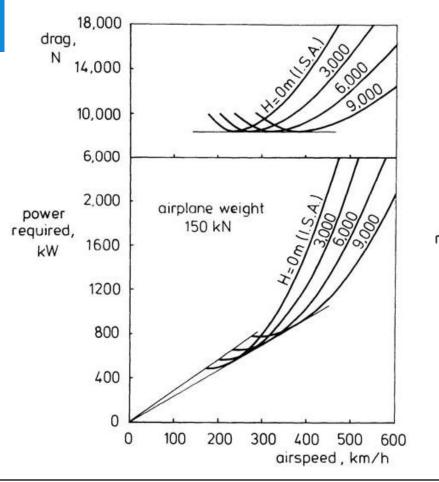
The **objective** is to minimize fuel for a given range

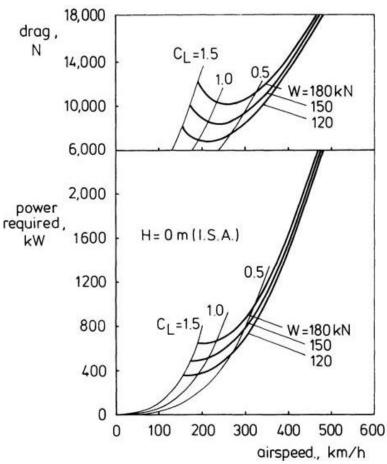
Key parameter:
Specific range V/F
[V]/[F] = [m/s]/[kg/s] = [m/kg]
So it is the distance travelled per unit of fuel



Performance diagram for jet aircraft

Effect of weight and altitude





Key conclusions

<u>Jet aircraft (analytical approximation)</u>

- 1. Choose V such that $(V/F)_{max} \rightarrow (C_L/C_D^2)$ max
- 2. H as high as possible (limited by the engine)
- 3. If the speed limit is reached at lower altitude: $V = V_{lim}$, H is such that C_L / C_D is max

Propeller aircraft (analytical approximation)

- Conclusion: Altitude is not important w.r.t V/F
- 2. But V is larger at high altitude

Breguet range equation

 $R = \int_{W_0}^{W_1} ds = \int_{W_1}^{W_0} \frac{V}{F} dW$

Jet aircraft (analytical approximation)

$$R = \int_{W_1}^{W_0} \frac{V}{c_T} \frac{C_L}{C_D} \frac{dW}{W}$$

Optimum cruise climb

$$R = \frac{V}{c_T} \frac{C_L}{C_D} \ln \left(\frac{W_0}{W_1} \right)$$

<u>Propeller aircraft</u>
(analytical approximation)

$$R = \int_{W_1}^{W_0} \frac{\eta_j}{c_p} \frac{C_L}{C_D} \frac{dW}{W}$$

Cruise flight with constant α , c_p and η_i :

$$R = \frac{\eta_j}{c_p} \frac{C_L}{C_D} \ln \left(\frac{W_0}{W_1} \right)$$

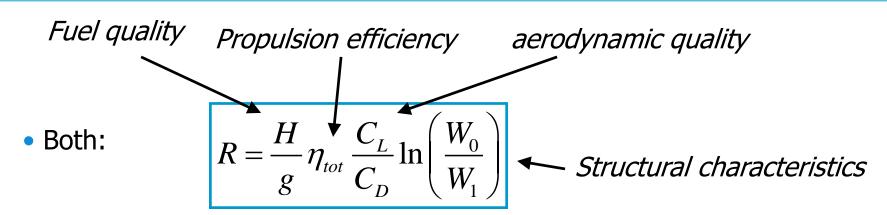
Unified Breguet range equation

Jet aircraft

$$\eta_{tot} = \frac{TV}{H \frac{F}{g}} = \frac{V}{c_T} \frac{g}{H}$$

Propeller aircraft

$$\eta_{tot} = \frac{TV}{H \frac{F}{g}} = \frac{\eta_j}{c_p} \frac{g}{H}$$



Questions?

