Flight and Orbital Mechanics

Lecture slides

Flight and Orbital Mechanics
Lecture 7 - Equations of motion
Mark Voskuijl
Semester 1-2012

$$
\begin{aligned}
& =\sqrt{\left(\frac{9 \lambda}{2 \pi}+\frac{2 \pi \gamma}{5 \lambda}\right) \tan } \\
& -\int_{\infty}^{\infty}(\alpha(A) \underset{\pi}{\infty}(k x-\infty,
\end{aligned}
$$

Time schedule

Date	Time	Hours	Topic
4 Sep	$10.45-12.30$	1,2	Unsteady climb
6 Sep	$10.45-12.30$	3,4	Minimum time to climb
11 Sep	$10.45-12.30$	5,6	Turning performance
13 Sep	$10.45-12.30$	7,8	Take - off
18 Sep	$10.45-12.30$	9,10	Landing
20 Sep	$10.45-12.30$	11,12	Cruise
25 Sep	$10.45-12.30$	13,14	Equations of motion (wind gradient)
27 Sep	$10.45-12.30$	15,16	Kepler orbits, gravity, Earth-repeat orbits, sun- synchronous orbits, geostationary satellites
2 Oct	$10.45-12.30$	17,18	Third-body perturbation, atmospheric drag, solar radiation, thrust
4 Oct	$10.45-12.30$	19,20	Eclipse, maneuvers
9 Oct	$10.45-12.30$	21,22	Interplanetary flight
11 Oct	$10.45-12.30$	23,24	Interplanetary flight
16 Oct	$10.45-12.30$	25,26	Launcher, ideal vs. real flight, staging, design
18 Oct	$10.45-12.30$	27,28	Exam practice

Content

- Introduction
- Axis systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Introduction
 Newton's laws

Newton's laws only hold with respect to a frame of reference which is in absolute rest. This is called an inertial frame of reference

Coordinate systems translating uniformly to the frame of reference in absolute rest are also inertial frames of reference

A rotating frame of reference is not an inertial frame of reference

Introduction
 Objective

- Derivation of equations of motion
- General 3 dimensional flight
- 2 dimensional flight with a wind gradient
- General approach!

Content

- Introduction
- Axis systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Axis systems and Euler angles

Earth axis system

horizontal plane

Earth axis system: $\left\{\mathbf{E}_{\mathrm{g}}\right\}$

1. X_{g} axis in the horizontal plane, orientation is arbitrary
2. Y_{g} axis in the horizontal plane, orientation: perpendicular to
3. $\mathrm{X}_{\mathrm{g}}{ }_{\mathrm{g}}$ axis points downwards

Axis systems and Euler angles

Assumption

Assumption 1: the earth is flat

'Centrifugal force'

$$
\begin{aligned}
& C=\frac{W}{g} \frac{V^{2}}{R_{e}+h} \\
& \frac{C}{W}=\frac{V^{2}}{\left(R_{e}+h\right) g}
\end{aligned}
$$

Example
$V=100[\mathrm{~m} / \mathrm{s}]$
$R_{e}=6371[\mathrm{~km}]$
$g=9.80665\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
$h=0$ [m]
\checkmark Valid assumption

Axis systems and Euler angles Assumptions

Assumption 2: the earth is non-rotating

Axis systems and Euler angles Moving earth axis system

Moving earth axis system: $\left\{\mathbf{E}_{\mathbf{e}}\right\}$

1. X_{e} parallel to X_{g} axis but attached to c.g. of aircraft
2. Y_{e} parallel to Y_{g} axis but attached to c.g. of aircraft
3. Z_{e} axis points downwards

Axis systems and Euler angles Body axis system

Body axis system: $\left\{\mathbf{E}_{\underline{b}}\right\}$

1. Origin is fixed to the aircraft c.g.
2. X_{b} lies in plane of symmetry and points towards the nose
3. Y_{b} is perpendicular to the plane of symmetry and is directed to the right wing
4. Z_{b} is perpendicular to X_{b} and Y_{b}

Axis systems and Euler angles Yaw angle (body axis)

- A rotation by ψ about the Z_{e}-axis
to the intermediate position $X^{\prime} Y^{\prime} Z_{e}$.

Axis systems and Euler angles

Pitch angle (body axis)

- A rotation by θ about the Y^{\prime}-axis to the intermediate position $X_{b} Y^{\prime} Z^{\prime}$.

Axis systems and Euler angles
 Roll angle (body axis)

- A rotation by ϕ about the X_{b}-axis to the final position $X_{b} Y_{b} Z_{b}$.

Axis systems and Euler angles

Air path axis system

Air path axis system: $\left\{\mathrm{E}_{\mathbf{a}}\right\}$

1. Origin is fixed to the aircraft c.g.

的 $x^{x_{b}}$ 2. x_{a} lies along the velocity vector
3. Z_{a} taken in the plane of symmetry of the airplane
4. Y_{a} is positive starboard

Axis systems and Euler angles Azimuth angle (air path axis)

- A rotation by X about the Z_{e}-axis to the intermediate position $X^{\prime} Y^{\prime} Z_{e}$.

Axis systems and Euler angles

Flight path angle (air path axis system)

Axis systems and Euler angles Aerodynamic angle of roll (air path axis system)

- A rotation by μ about the X_{a}-axis to the final position $X_{a} Y{ }_{a} Z_{a}$.

Axis systems and Euler angles Summary

- Four axes systems can be defined
- Earth
- Moving Earth
- Body axes
- Air path axes
- Three Euler angles define the orientation of the aircraft (body axes) Yaw $\psi \rightarrow$ Pitch $\theta \rightarrow$ Roll ϕ
- Three Euler angles define the orientation of the aircraft (body axes) Azimuth $\chi \rightarrow$ Flight path $\gamma \rightarrow$ Aerodynamic roll μ
- The sequence of the Euler angles is very important!!!

TUDeft

Content

- Introduction
- Axis systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Vector / matrix notation

Vector / matrix notation

$$
\vec{r}=x \cdot \vec{i}+y \cdot \vec{j}+z \cdot \vec{k}=\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left\{\begin{array}{l}
\stackrel{\rightharpoonup}{i} \\
\vec{j} \\
\vec{k}
\end{array}\right\}
$$

$$
=\left(\begin{array}{lll}
x & y & z
\end{array}\right)\{\underline{E}\}
$$

(): Row
\{ \}: Column
[]: Square matrix

Content

- Introduction
- Axes systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Accelerations

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{V}}{d t} \\
& \vec{V}=\left[\begin{array}{lll}
V & 0 & 0
\end{array}\right]\left\{E_{a}\right\} \\
& \frac{d \vec{V}}{d t}=\left[\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right]\left\{E_{a}\right\}+\left[\begin{array}{lll}
V & 0 & 0
\end{array}\right]\left\{\dot{E}_{a}\right\}
\end{aligned}
$$

What is the time derivative of the air path axis system?

Accelerations

Time derivative of the air path axis system

Accelerations

$$
\begin{aligned}
& \frac{d \bar{V}}{d t}=\left[\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right]\left\{E_{a}\right\}+\left[\begin{array}{lll}
V & 0 & 0
\end{array}\right]\left\{\dot{E}_{a}\right\} \\
& \frac{d \bar{V}}{d t}=\left[\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right]\left\{E_{a}\right\}+\left[\begin{array}{lll}
V & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \omega_{z} & -\omega_{y} \\
-\omega_{z} & 0 & \omega_{x} \\
\omega_{y} & -\omega_{x} & 0
\end{array}\right]\left\{\underline{E}_{a}\right\} \\
& \frac{d \bar{V}}{d t}=\left[\begin{array}{lll}
\dot{V} & V \omega_{z} & -V \omega_{y}
\end{array}\right]\left\{E_{a}\right\}
\end{aligned}
$$

Content

- Introduction
- Axes systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Forces

$$
\vec{F}=\vec{L}+\vec{D}+\vec{T}+\vec{W}
$$

$$
\stackrel{\rightharpoonup}{F}=(T-D-L)\left\{\underline{E}_{a}\right\}+W\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left\{\underline{E}_{e}\right\}
$$

No sideslip

Assume thrust in direction of airspeed vector

Forces

Sideslip angle

Forces

Sideslip angle

a. symmetric flight

b. coordinated turn

c. skidding out
of turn
(Φ too small)

d. slipping into
turn
(Φ too great)

Forces

Sideslip angle

a. Φ too small:
skidding out of turn

b. Φ too large: slipping into turn

Forces

$$
\begin{aligned}
& \vec{F}=\vec{L}+\vec{D}+\stackrel{\rightharpoonup}{T}+\stackrel{\rightharpoonup}{W} \\
& \stackrel{\rightharpoonup}{F}=\left(\begin{array}{lll}
T-D & 0 & -L
\end{array}\right)\left\{\underline{E}_{a}\right\}+W\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left\{\underline{E}_{e}\right\}
\end{aligned}
$$

Problem: different axis systems
\rightarrow Express all forces in 1 axis system

Forces

Transformation matrices

Forces

Rotation over azimuth angle (χ)

$$
\begin{aligned}
& \vec{i}_{1}=\vec{i}_{e} \cos \chi+\vec{j}_{e} \sin \chi \\
& \vec{j}_{1}=-\vec{i}_{e} \sin \chi+\vec{j}_{e} \cos \chi \\
& \vec{k}_{1}=\vec{k}_{e} \\
& \left\{\begin{array}{l}
\vec{i}_{1} \\
\vec{j}_{1} \\
\vec{k}_{1}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos \chi & \sin \chi & 0 \\
-\sin \chi & \cos \chi & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
\vec{i}_{e} \\
\vec{j}_{e} \\
\vec{k}_{e}
\end{array}\right\} \\
& \left\{\underline{E}_{1}\right\}=\left[T_{\chi}\right]\left\{\underline{E}_{e}\right\}
\end{aligned}
$$

Forces

Rotation over flight path angle (γ)

$$
\begin{aligned}
& \left\{\begin{array}{c}
\vec{i}_{2}=\vec{i}_{1} \cos \gamma-\vec{k}_{1} \sin \gamma \\
\vec{j}_{2}=\vec{j}_{1} \\
\vec{k}_{2}=\vec{i}_{1} \sin \gamma+\vec{k}_{1} \cos \gamma
\end{array}\right. \\
& \left\{\underline{E}_{2}\right\}=\left[T_{\gamma}\right]\left\{\underline{E}_{1}\right\} \\
& {\left[T_{\gamma}\right]=\left[\begin{array}{ccc}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]}
\end{aligned}
$$

Forces

Rotation over aerodynamic angle of roll (μ)

$$
\begin{aligned}
& \left\{\begin{array}{c}
\bar{i}_{a}=\bar{i}_{2} \\
\bar{j}_{a}=\bar{j}_{2} \cos \mu+\vec{k}_{2} \sin \mu \\
\bar{k}_{a}=-\bar{j}_{2} \sin \mu+\vec{k}_{2} \cos \mu
\end{array}\right. \\
& \left\{\underline{E}_{a}\right\}=\left[T_{\mu}\right]\left\{\underline{E}_{2}\right\}
\end{aligned}
$$

$$
\left[T_{\mu}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]
$$

Forces

Transformation matrices

Forces

Transformation matrices

$$
\left\{\underline{E}_{1}\right\}=\left[T_{x}\right]\left\{\underline{E}_{e}\right\}
$$

Forces

Properties of transformation matrices

$$
\begin{aligned}
& {[]^{-1}=[]^{\top}} \\
& {[] \cdot[]^{-1}=[]^{-1} \cdot[]=[I]}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
\cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

Forces

All results combined

$$
\left.\left.\left.\begin{array}{rl}
\vec{F} & =\vec{L}+\vec{D}+\vec{T}+\vec{W} \\
& =\left(\begin{array}{lll}
T-D & 0 & -L
\end{array}\right)\left\{\underline{E}_{a}\right\}+W\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left\{\underline{E}_{e}\right\} \\
\vec{F} & =\left(\begin{array}{lll}
T-D & 0 & -L
\end{array}\right)\left\{\underline{E}_{a}\right\}+\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left[T_{\chi}\right]^{T}\left[T_{\gamma}\right]^{T}\left[T_{\mu}\right]^{T}\left\{\underline{E}_{a}\right\}
\end{array}\right] \begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left\{E_{e}\right\}=W\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left[\begin{array}{ccc}
\cos \chi & \sin \chi & 0 \\
-\sin \chi & \cos \chi & 0 \\
0 & 0 & 1
\end{array}\right]^{T}\left[\begin{array}{ccc}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]^{T}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]^{T}\left\{E_{a}\right\}\right\}
$$

$$
W\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left\{E_{e}\right\}=(-W \sin \gamma \quad W \cos \gamma \sin \mu \quad W \cos \gamma \cos \mu)\left\{E_{a}\right\}
$$

$$
\vec{F}=(T-D-W \sin \gamma \quad W \cos \gamma \sin \mu \quad-L+W \cos \gamma \cos \mu)\left\{\underline{E}_{a}\right\}
$$

Equations of motion

$$
\vec{F}=m \cdot \vec{a}
$$

$$
\vec{F}=(T-D-W \sin \gamma \quad W \cos \gamma \sin \mu \quad-L+W \cos \gamma \cos \mu)\left\{\underline{E}_{a}\right\}
$$

$$
\vec{a}=\frac{d \vec{V}}{d t}=\left[\begin{array}{lll}
\dot{V} & V \omega_{z} & -V \omega_{y}
\end{array}\right]\left\{E_{a}\right\}
$$

$$
\begin{array}{|l|}
\hline T-D-W \sin \gamma=m \dot{V} \\
W \cos \gamma \sin \mu=m V \omega_{z} \\
-L+W \cos \gamma \cos \mu=-m V \omega_{y}
\end{array}
$$

3 equations of motion!

Equations of motion
 Rewrite in traditional form

$$
\left\{\begin{array}{c}
T-D-W \sin \gamma=m \dot{V} \\
W \cos \gamma \sin \mu=m V \omega_{z} \\
-L+W \cos \gamma \cos \mu=-m V \omega_{y}
\end{array}\right.
$$

Using transformation matrices to convert $\omega_{x} \omega_{y}$ and ω_{z}

$$
\left\{\begin{array}{c}
m \dot{V}=T-D-W \sin \gamma \\
m V \dot{\chi} \cos \gamma=L \sin \mu \\
m V \dot{\gamma}=L \cos \mu-W \cos \gamma
\end{array}\right.
$$

Equations of motion
 Conversion $\omega_{x^{\prime}} \omega_{y}, \omega_{z}$ to $\mathrm{d} x / \mathrm{dt}, \mathrm{d} \gamma / \mathrm{dt}, \mathrm{d} \mu / \mathrm{dt}$

$\overline{\dot{\chi}}=\left[\begin{array}{lll}0 & 0 & \dot{\chi}\end{array}\right]\left\{E_{1}\right\}$
$\left\{E_{1}\right\}=\left[T_{\gamma}\right]^{-1}\left[T_{\mu}\right]^{-1}\left\{E_{a}\right\}$

- A rotation by X about the Z_{e}-axis
to the intermediate position $X^{\prime} Y^{\prime} Z_{e}$.
$\stackrel{\rightharpoonup}{\dot{\chi}}=\left[\begin{array}{lll}0 & 0 & \dot{\chi}\end{array}\right]\left[\begin{array}{ccc}\cos \gamma & 0 & \sin \gamma \\ 0 & 1 & 0 \\ -\sin \gamma & 0 & \cos \gamma\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \mu & -\sin \mu \\ 0 & \sin \mu & \cos \mu\end{array}\right]\left\{E_{a}\right\}$
$\overrightarrow{\dot{\chi}}=\left[\begin{array}{lll}-\dot{\chi} \sin \gamma & \dot{\chi} \cos \gamma \sin \mu & \dot{\chi} \cos \gamma \cos \mu\end{array}\right]\left\{E_{a}\right\}$

Equations of motion
 Conversion $\omega_{x^{\prime}} \omega_{y^{\prime}} \omega_{z}$ to $\mathrm{d} / / \mathrm{dt}, \mathrm{d} \gamma / \mathrm{dt}, \mathrm{d} \mu / \mathrm{dt}$

$$
\begin{aligned}
& \bar{\gamma}=\left[\begin{array}{ll}
0 & \dot{\gamma} \\
\hline
\end{array}\right]\left\{E_{2}\right\} \\
& \left\{E_{2}\right\}=\left[T_{\mu}\right]^{-1}\left\{E_{a}\right\}
\end{aligned}
$$

- A rotation by γ about the γ^{\prime}-axis to the intermediate position $X_{a} Y^{\prime} Z^{\prime}$.
$\overrightarrow{\dot{\gamma}}=\left[\begin{array}{lll}0 & \dot{\gamma} & 0\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \mu & -\sin \mu \\ 0 & \sin \mu & \cos \mu\end{array}\right]\left\{E_{a}\right\}$
$\stackrel{\rightharpoonup}{\dot{\gamma}}=\left[\begin{array}{lll}0 & \dot{\gamma} \cos \mu & -\dot{\gamma} \sin \mu\end{array}\right]\left\{E_{a}\right\}$

Equations of motion Conversion $\omega_{x^{\prime}} \omega_{y \prime} \omega_{z}$ to $\mathrm{d} \chi / \mathrm{dt}, \mathrm{d} \gamma / \mathrm{dt}, \mathrm{d} \mu / \mathrm{dt}$

$$
\begin{aligned}
& \vec{\mu}=\left[\begin{array}{lll}
\dot{\mu} & 0 & 0
\end{array}\right]\left\{E_{3}\right\} \\
& \left\{E_{3}\right\}=\left\{E_{a}\right\} \\
& \vec{\mu}=\left[\begin{array}{lll}
\dot{\mu} & 0 & 0
\end{array}\right]\left\{E_{a}\right\}
\end{aligned}
$$

- A rotation by μ about the X_{a}-axis to the final position $X_{a} Y a{ }_{a}$.

Equations of motion Conversion $\omega_{x^{\prime}} \omega_{y}, \omega_{z}$ to $\mathrm{d} x / \mathrm{dt}, \mathrm{d} \gamma / \mathrm{dt}, \mathrm{d} \mu / \mathrm{dt}$

$\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]\left\{E_{a}\right\}=$
$[-\dot{\chi} \sin \gamma+\dot{\mu} \quad \dot{\chi} \cos \gamma \sin \mu+\dot{\gamma} \cos \mu \quad \dot{\chi} \cos \gamma \cos \mu-\dot{\gamma} \sin \mu]\left\{E_{a}\right\}$

Content

- Introduction
- Axes systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Equations of motion

Final result

$$
\begin{gathered}
m \dot{V}=T-D-W \sin \gamma \\
m V \dot{\chi} \cos \gamma=L \sin \mu \\
m V \dot{\gamma}=L \cos \mu-W \cos \gamma
\end{gathered}
$$

Content

- Introduction
- Axes systems and Euler angles
- Vector / matrix notation
- Accelerations
- Forces
- General equations of motion 3D flight
- Effect of a wind gradient

Effect of a wind gradient Question

An aircraft is flying from A to B over a distance of 1000 nautical miles. The True Airspeed of this aircraft is 120 knots ($1 \mathrm{kt}=1$ nautical mile per hour). The aircraft is experiencing a constant headwind of 20 kts.

How long does it take to fly from A to B ?
A. Less than 10 hours
B. 10 hours
C. More than 10 hours

Effect of a wind gradient

Effect of a wind gradient

Effect of a wind gradient

Effect of a wind gradient

Wind is not constant:

$$
\frac{d \bar{V}_{W}}{d t} \neq 0
$$

This lecture: only horizontal wind

Effect of a wind gradient

Absolute acceleration
$\underline{a}=\underline{\dot{V}_{g}}$
So we need to define the velocity first
$\underline{V_{g}}=\underline{V}+\underline{V_{w}}$
$\overline{V_{g}}=\left(\begin{array}{lll}V & \overline{0} & 0\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}-V_{w} & 0 & 0\end{array}\right)\left\{\underline{E_{g}}\right\}$
$\dot{r}=V_{g} \quad($ ground speed)

The acceleration can be determined by taking the time derivative

$$
\begin{aligned}
& \underline{a}=\underline{\dot{V}_{g}}=\underline{\dot{V}}+\underline{\dot{V}_{w}} \\
& \underline{a}=\frac{d}{d t}\left(\left(\begin{array}{lll}
V & 0 & 0
\end{array}\right)\left\{\underline{E_{a}}\right\}\right)+\frac{d}{d t}\left(\left(\begin{array}{lll}
-V_{w} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\}\right)
\end{aligned}
$$

$\left.\left.\underline{a}=\left(\begin{array}{lll}\dot{V} & 0 & 0\end{array}\right)\left\{\underline{E_{a}}\right\}\right\}+\left(\begin{array}{lll}V & 0 & 0\end{array}\right)\left\{\underline{\dot{E}_{a}}\right\}+\left(\begin{array}{lll}-\dot{\dot{V}}_{w} & 0 & 0\end{array}\right)\left\{\underline{E_{g}}\right\}\right\}+\left(\begin{array}{lll}-\underline{V_{w}} & 0 & 0\end{array}\right)\left\{\underline{\dot{E}_{g}}\right\}$

$$
\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
V & 0 & 0
\end{array}\right)\left\{\begin{array}{|l|l}
\underline{\dot{E}_{a}}
\end{array}\right\}+\left(\begin{array}{ccc}
-\dot{V}_{w} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\}+\left(\begin{array}{lll}
-V_{w} & 0 & 0
\end{array}\right)\left\{\begin{array}{l}
\dot{\dot{E}_{g}}
\end{array}\right\}
$$

What are $\left\{\dot{E}_{a}\right\}$ and $\left\{\dot{E}_{g}\right\}$???
The ground axis system is at rest
$\left\{\dot{E}_{g}\right\}=\overrightarrow{0}$
However, the air path axis system is rotating and translating

TUDelft

Effect of a wind gradient

$$
\begin{aligned}
& \left\{\dot{E}_{a}\right\}=\left(\begin{array}{l}
\frac{d}{d t}(\vec{i}) \\
\frac{d}{d t}(\vec{j}) \\
\frac{d}{d t}(\vec{k})
\end{array}\right) \\
& \frac{d}{d t}(\vec{i})=0 \cdot \vec{i}+0 \cdot \vec{j}-\dot{\gamma} \vec{k} \\
& \frac{d}{d t}(\vec{j})=0 \cdot \vec{i}+0 \cdot \vec{j}+0 \cdot \vec{k} \quad\left\{\dot{E}_{a}\right\}=\left(\begin{array}{l}
\frac{d}{d t}(\vec{i}) \\
\frac{d}{d t}(\vec{j}) \\
\frac{d}{d t}(\vec{k})=\dot{\gamma} \cdot \vec{i}+0 \cdot \vec{j}+0 \cdot \vec{k} \quad\left[\begin{array}{ccc}
0 & 0 & -\dot{\gamma} \\
0 & 0 & 0 \\
\dot{\gamma} & 0 & 0
\end{array}\right]\left(\begin{array}{l}
\vec{i} \\
\vec{j} \\
\vec{k}
\end{array}\right)=\left[\begin{array}{ccc}
0 & 0 & -\dot{\gamma} \\
0 & 0 & 0 \\
\dot{\gamma} & 0 & 0
\end{array}\right]\left\{E_{a}\right\}
\end{array}, \begin{array}{l}
\dot{\bar{j}}=-\vec{k} \dot{\gamma} \\
\mathrm{X}_{\mathrm{a}}
\end{array}\right.
\end{aligned}
$$

Effect of a wind gradient

$$
\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right)\left\{\underline{\underline{E}_{a}}\right\}+\left(\begin{array}{lll}
V & 0 & 0
\end{array}\right)\left\{\underline{\dot{E}_{a}}\right\}+\left(\begin{array}{lll}
-\dot{V}_{w} & 0 & 0
\end{array}\right)\left\{\underline{\underline{E}_{g}}\right\}+\left(\begin{array}{lll}
-V_{w} & 0 & 0
\end{array}\right)\left\{\underline{\dot{E}_{g}}\right\}
$$

Fill in the results

$$
\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
V & 0 & 0
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & -\dot{\gamma} \\
0 & 0 & 0 \\
\dot{\gamma} & 0 & 0
\end{array}\right]\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
-\underline{\dot{V}_{w}} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\}
$$

Write out

$$
\left.\left.\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & 0
\end{array}\right)\left\{\underline{E_{a}}\right\}\right\}+\left(\begin{array}{lll}
0 & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}\right\}+\left(\begin{array}{ccc}
-\dot{\dot{V}}_{w} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\}
$$

Simplify

$$
\left.\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}\right\}+\left(\begin{array}{lll}
-\dot{\underline{V}}_{w} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\} \quad \text { Two axis systems... }
$$

Effect of a wind gradient

$$
\left.\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}\right\}+\left(\begin{array}{lll}
-\dot{V}_{w} & 0 & 0
\end{array}\right)\left\{\underline{E_{g}}\right\}
$$

$$
\begin{aligned}
& \underline{i_{g}}=\cos \gamma \cdot \dot{i}_{a}+0 \cdot \underline{j_{a}}+\sin \gamma \cdot \underline{k}_{a} \\
& \underline{j_{g}}=0 \cdot \dot{i}_{\underline{a}}+1 \cdot \underline{j_{a}}+0 \cdot \underline{k_{a}} \\
& \underline{k_{g}}=-\sin \gamma \cdot \underline{i}_{\underline{a_{2}}}+0 \cdot \underline{j_{a}}+\cos \gamma \cdot \underline{k_{a}}
\end{aligned}
$$

Rotation over angle γ

$$
\underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
-\dot{V}_{w} & 0 & 0
\end{array}\right)\left[\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left\{\underline{\left\{E_{a}\right.}\right\}
$$

Effect of a wind gradient

$$
\begin{aligned}
& \underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
-\dot{V}_{w} & 0 & 0
\end{array}\right)\left[\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left\{\underline{E_{g}}\right\} \\
& \underline{a}=\left(\begin{array}{lll}
\dot{V} & 0 & -V \dot{\gamma}
\end{array}\right)\left\{\underline{E_{a}}\right\}+\left(\begin{array}{lll}
-\underline{V_{w}} \cos \gamma & 0 & -\dot{V}_{w} \sin \gamma
\end{array}\right)\left\{\underline{E_{a}}\right\} \\
& \underline{a}=\left(\begin{array}{lll}
\dot{V}-\dot{V}_{w} \cos \gamma & 0 & -V \dot{\gamma}-\dot{V}_{w} \sin \gamma
\end{array}\right)\left\{\underline{E_{a}}\right\}
\end{aligned}
$$

Effect of a wind gradient

Effect of a wind gradient

$$
\left.\begin{array}{l}
\underline{F}=m \cdot \dot{V}_{g} \\
\underline{F}=\left(\begin{array}{llll}
T-D-W \sin \gamma & 0 & W \cos \gamma-L
\end{array}\right)\left\{\underline{E_{a}}\right\} \\
\underline{a}=\left(\begin{array}{lll}
\dot{V}-\dot{V}_{w} & \cos \gamma & 0
\end{array}-V \dot{\gamma}-\underline{\dot{V}_{w}} \sin \gamma\right.
\end{array}\right)\left\{\underline{E_{a}}\right\}, ~ l
$$

$$
\begin{aligned}
& T-D-W \sin \gamma=\frac{W}{g}\left(\dot{V}-\dot{V}_{w} \cos \gamma\right) \\
& 0=0 \\
& L-W \cos \gamma=\frac{W}{g}\left(V \dot{\gamma}+\dot{V}_{w} \sin \gamma\right)
\end{aligned}
$$

Effect of a wind gradient

$$
\begin{aligned}
& \dot{H}=R C=V \sin \gamma \\
& \dot{s}=V \cos \gamma-V_{w}
\end{aligned}
$$

Effect of a wind gradient

TUDelft
AE2104 Flight and Orbital Mechanics

Questions?

