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Flight and Orbital Mechanics

Lecture slides



Material for exam: this presentation (i.e., no material from text book).

Illustration shows a 3-burn transfer. This can be the most efficient transfer from 
circular Low Earth Orbit (LEO) to Geostationary (GEO) orbit.



Introduction picture.







For LEO satellites, an eclipse may take about one-third of an orbital revolution. 
During this period there is no inflow of energy for the power subsystem, nor for 
the thermal control of the vehicle. Also, the Sun is not available as a point of 
reference for the attitude control system (if only for the fail-safe mode). The 
design of the satellite has to be such that this situation can be accommodated for.



The far majority of satellites orbit Earth in (near-)circular orbits. Parameters ”Re” 
and ”a” represent the Earth radius and the semi-major axis of the satellite orbit 
(for circular orbits: the orbit radius r), respectively. Torbit = 2π√(a3/µ).



For LEO satellites, eclipse length expressed in minutes is more-or-less constant 
(Vcirc at 500 km altitude is 7.61 km/s, Vcirc at 1500 km is 7.11 km/s). 
Consequences for the design of the (secondary) batteries.



Answers (TRY YOURSELF FIRST!!):

a) Torbit = 6052.4 s, or 100.87 min.

b) Teclipse= 35.1 min

c) a = 42164.14 km

d) Teclipse= 69.4 min



The vector Rʘ gives the position of the Sun w.r.t. the center of the Earth. The 
vector r gives the position of the satellite w.r.t. the center of the Earth. The latter 
vector can be decomposed in components “d” (parallel to the direction towards 
the Sun) and ”a” (perpendicular to the direction towards the Sun; not to be 
confused with the semi-major axis!). The angle Ψ is the angle between the 
direction to the Sun and the direction to the satellite.



Both conditions have to be satisfied!

Question: can we come up with expressions for the angle Ψ and the distance a?



Parameters ”ξ” and ”η” represent two position components of the satellite within 
its orbital plane: the first parameter is measured from the focal center along the 
major axis, in the direction of the pericenter (for which the true anomaly θ is 
equal to 0°), whereas the 2nd parameter is measured in the direction where θ is 
equal to 90°.

Parameter p = a(1-e2), “semi-latus rectum”.



The parameters ”l1” through “n2” together represent the coordinates 
transformation from this in-plane situation to a full 3-dimensional situation, and 
are dependent on the orientation of the satellite orbit only (and not so much its 
position within the orbital plane):

l1 = cos(Ω)cos(ω) - sin(Ω)sin(ω)cos(i)

l2 = -cos(Ω)sin(ω) - sin(Ω)cos(ω)cos(i)

m1 = sin(Ω)cos(ω) + cos(Ω)sin(ω)cos(i)

m2 = -sin(Ω)sin(ω) + cos(Ω)cos(ω)cos(i)

n1 = sin(ω)sin(i)

n2 = cos(ω)sin(i)

So, the 3D position of a satellite in a Kepler orbit can be fully represented with a 
single time-dependent variable (i.e., θ).

The position of the Sun can be obtained from an almanac (or a simple analytical 
model: a(nother) Kepler orbit if needed!). 



The (big) ”dot” in the first equation represents the inner product between two 
vectors. This inner product can be developed in two ways: (1) multiplication of 
vector elements (as shown on the previous sheet) and summation, or (2) 
multiplication of vector lengths and cosine of angle-in-between. Parameters 
”αbar” and ”βbar” can be considered as constants for a given epoch (or, 1st-order 
approximation, during one complete revolution – see subsequent sheets).

The conditions for eclipse are directly developed form the 2 elementary 
conditions mentioned on sheet 10.



Parameter ”p” represents the so-called semi-latus rectum: p = a(1-e2).

Equation after “so”: combine expressions for sinΨ and cosΨ of previous sheet 
and re-arrange. Holds for condition of entering/leaving eclipse!

For a given epoch and satellite Kepler orbit, the shadow function S varies with 
true anomaly θ only. Solution?



Whether the satellite is in eclipse (Earth shadow) or not is now fully determined 
by 2 parameters: Ψ and S. The (requirement on the) shadow function S replaces 
the (requirement on) the distance “a”.

To interpret the consequences for e.g. S<0 and S>0, consider the situation where 
Ψ=90° (i.e. we know for sure that the satellite must be in Sunlight): it can easily 
be derived (do!) that for that case S<0, so this apparently corresponds with the 
situation “in sunlight”.



Sun is in direction (1,0,0). Legend: ”i” is inclination, ”O” is Ω (w.r.t. direction to 
Sun).



Answer: see previous sheets.





Answers (DID YOU TRY?):

See treatment and derivation on previous pages.



Scales and effects are exaggerated. Umbra is the situation when the satellite is in 
full shadow; in penumbra part of the sunlight can still hit the vehicle.

GEO satellite: the vehicle lacks an inflow of 1371 W/m2 during 120 sec….



Can you verify these numbers?



Answers (TRY YOURSELF FIRST!!):

a) Torbit = 6052.4 s, or 100.87 min.

b) Teclipse= 34.93 min

c) Teclipse= 35.13 min

d) Difference Teclipse= 0.20 min



Magnitude of effect on eclipse length is similar to that of penumbra.





So far, the occurrence of eclipse during the course of a single revolution of the 
satellite around Earth was investigated. How about the behaviour during its 
overall lifetime?

Mission design aspect: power supply, thermal control, attitude control, …… What 
can we expect during say 10 years?



Fundamental criterion: hiding behind Earth, yes/no?

Eclipse condition: projection of orbit perpendicular to direction to Sun is smaller 
than Earth radius. Being in front of Earth or behind it does not matter since the 
satellite will be in both positions during one revolution. In the illustration, the 
size of the orbit is too large to be in eclipse anywhere, but when the orbit size 
reduces it becomes a possibility. Assumption: circular orbit. Note that in this and 
subsequent sheets, parameter “a” represents the semi-major axis again. The 
components of the vector n are given in an equatorial reference frame (i.e., z-axis 
points in the direction of the Earth’s North pole). Check: cos(βsun‘)=sin(βsun).



Eclipse condition: projection of orbit perpendicular to direction to Sun is smaller 
than Earth radius. Consider these 2 situations for a GEO satellite (i.e. at an 
altitude of 6 Earth radii), and the Sun at a declination of +23.5° (top plot; 
exaggerated angle…) or at +2°.

In both plots, the orbital plane is perpendicular to the sheet, i.e. the satellite exits 
(or enters) the sheet at right angles.



Note: Sun-synchronous only says something about the (average) orientation of 
the orbital plane w.r.t. the direction to the Sun. It does NOT mean that the satellite 
is in full sunlight continuously!!!!





For sake of simplicity, assume e=0.



In this picture, the satellite orbital plane is at right angles with the sheet (so the 
satellite is entering the sheet at right angles, in this sketch (or leaving it, for that 
matter….)). So, the vector normal to the orbital plane lays within the sheet.

If we do not have a sun-synchronous orbit, the relative orientation of the Sun 
w.r.t. the orbital plane will have all possible directions over the course of years. 
Unless it is “under control” by the precession of Ω induced by the J2-effect.

The angle βsunwas already defined on sheet 26.



For sun-synchronous orbits, we have a strict 1-on-1 relation between semi-major 
axis and inclination (assuming e=0) (cf. lecture hours 15+16).

The 2nd equation holds for a given value of δsun, of course.

The last equation corresponds with the requirement on sheets 10 and 26.



Requirement a×sinβsun>Re satisfied for all 3 cases? Yes, for inclinations 101.5-
115.4°.



Inclination -> semi-major axis -> altitude.

Nice idea, but quite a number of drawbacks… � no practical application.

Van Allen Belts are regions in space with huge concentrations of (trapped) 
charged particles, causing fast degradation of instruments, solar cells, etcetera; 
they start at about 1000 km altitude.



Orbit transfers: e.g. a transfer from Low Earth Orbit (LEO) to Geostationary 
Orbit (GEO). Orbit maintenance: e.g. to compensate for atmospheric drag losses. 



Note the bold notation when refering to vectors, and the plain notation when 
refering to scalar values. The big ”dot” in the last equation represents taking the 
inner product of two vectors.

The two observations hold for the case when doing in-plane maneuvers.



So-called dog-leg maneuvers change the orientation of the velocity (and possibly 
also the magnitude).



Vcirc = √(µ/a) (where “a” is semi-major axis, not altitude!). The most efficient 
launch from Kennedy Space Center results in an orbit with an inclination of 
28.5°. When going for a GEO (i=0°), a large ∆V is required no matter what. 
Translate into propellant mass with Tsiolkovsky’s equation….

Kourou (+Ariane, or Soyuz) is a better choice (since it is located at 5°)!



Note: the target velocity Vf stretches all the way, from lower left to lower right!

General definitions; impulsive shots. ∆θ is the angle between Vi and Vf. A 
combined maneuver is more efficient than 2 separate ones.



General definitions; impulsive shots. The angle between Vi and Vf is equal to 
28.5°. Additional parameter values: µ = 398600.4415 km3/s2; Re = 6378.137 km.



General definitions; impulsive shots. The angle between Vi and Vf is equal to 
28.5°. Additional parameter values: µ = 398600.4415 km3/s2; Re = 6378.137 km.



Answers (DID YOU TRY??):

a) a = 42164.125 km

b) Vc = 3.075 km/s

c) ∆V = 0.268 km/s



Concept of Hohmann orbit. Essential: touches initial and final orbits in tangential 
direction. Impulsive shots.

This plot sketches Hohmann transfers, both for low�high (green velocity 
changes, 2x) and for high�low (red, also 2 maneuvres).

It holds for transfer of orbits around Earth (since the ∆V’s directly translate into 
orbit changes). In the case of interplanetary missions, one would need to evaluate 
the effect of a ∆V in the pericenters of the departure and arrival hyperbola to the 
excess velocities.



Equations for Hohmann transfers around one and the same planet. Equations hold 
for transfer from low orbit to high orbit, but similar expressions exist for transfer 
in other direction. Note: circular initial and target orbits, so r1=a1 and r2=a2 . Use 
the vis-viva equation (i.e., the energy equation, re-arranged) to compute the 
velocities in pericenter and apocenter.



Equations for Hohmann transfers around 1 and the same planet. Additional 
parameter values: µ = 398600.4415 km3/s2; Re = 6378.137 km.



Equations for Hohmann transfers around 1 and the same planet. Additional 
parameter values: µ = 398600.4415 km3/s2; Re = 6378.137 km.



Answers (DID YOU TRY FIRST??):

a) Vc,185= 7.793 km/s, Vc,800= 7.452 km/s

b) a = 6870.5 km, e = 0.045

c) ∆V1 = 0.173 km/s, ∆V2 = 0.169 km/s, ∆Vtot = 0.342 km/s

d) 2834 s = 47.2 min



Real mission operations: a good understanding of what’s ongoing is crucial for 
the lifetime of the mission (in terms of ∆V budget).

Translate these ∆V values to propellant mass (using Tsiolkovsky’s equation) and 
you’ll understand why you’re either employee of the year or you find yourself 
fired…..



Answers (DID YOU TRY??):

a) Vc,185= 7.793 km/s, Vc,400= 7.669 km/s

b) ∆VHohmann= 0.125 km/s

c) ∆Vdogleg= 3.652 km/s

d) ∆Vtotal = 3.777 km/s

e) ∆Vtotal = 0.063 + 3.579 = 3.579 km/s



The plane change is being done at a very high altitude, where the in-plane 
velocity of the vehicle is very modest. Takes more (in-plane) energy to arrive at 
this point, though. Only interesting when rtarget/rinitial > 11.



Consider the Hohmann trajectory as the reference; can we do faster? More 
efficient?



Design: trade time vs. propellant mass (or: payload mass).



The picture shows the phase around the Moon, where the orbit was lowered and 
made less eccentric.



Options in general, and (some) for interplanetary flight only.



The interplanetary orbit went from i=0° to i=80.2° because of the 3-dimensional 
swingby (a.k.a. gravity-assist, slingshot, flyby) at Jupiter. An impulsive maneuver 
with traditional rocket engines would have cost us an impossible 42 km/s.



De-orbit is costing energy. Here, you do only the first burn of a Hohmann 
transfer. How much do you want to spend, and how rapidly does your satellite 
burn up? Trade…



Use Tsiolkovsky’s equation to get propellant mass.



ANSWERS: (DID YOU TRY??)

a) ∆V = 167.3 m/s

b) Mprop = 55.3 kg

c) Lifetime = -H/(∆a2π) (cf. topic “Perturbations”) ~ 6,647,000 revs ~ 475,380 
days ~ 1301 yrs. This estimate is based on drag conditions at an altitude of 
900 km; with the pericenter of the orbit at 800 km and the apocenter at 1500 
km, drag shows a big variation throughout a single revolution around Earth. 
Representative (constant) drag conditions which can be applied along the 
entire orbit (and which should be used in the computation of ∆a2π and the 
selection of density scale height H) should hold at an altitude somewhere in 
between these 2 extremes. But: since atmospheric density behaves in an 
exponential way, it’s not so much the direct average altitude 
((1500+800)/2=1150km) where one finds the average drag, but somewhere 
below. Assume here that 900 km is reasonable.

d) ∆V = 245.2 m/s; Mprop = 79.9 kg; lifetime ~ 111,000 revs ~ 7462 days ~ 20.4 
yrs (based on drag conditions at a representative altitude of 600 km)





ANSWERS: (DID YOU TRY??)

a) aGEO = 42163 km

b) ∆V = 4.54 + 4.53 = 9.07 m/s

c) Tsiolkovsky: mprop = 3.1 kg

d) ∆V = 9.04 + 9.02 = 18.06 m/s; mprop = 6.2 kg



Some space missions require guaranteed 100% continuity (e.g.
telecommunication services, from GEO) -> a spare vehicle is available in the 
proper orbit already, but not at the location of the satellite that fails. Orbits with 
different semi-major axes will show a different orbital period -> can be used to 
drift in-plane w.r.t. original position.



The red box represents a satellite in the red orbit; the blue dot is a satellite in the 
blue orbit. The green circle represents Earth. Picture is not to scale. Because of 
the difference in orbital period, the blue satellite “overtakes” the red one.

So, if satellite is originally in red orbit, but temporarily switches to the blue orbit, 
it will alter its position w.r.t. the position it would have if it were to remain in the 
red orbit.



Parameter “norg” is mean motion (in original orbit; norg = √(µ/a3) [rad/s]).

“Trial and error”: try various altitudes for pericenter altitude of temporary orbit, 
and see what you end up with (transfer times, total ∆V).



Parameters ”a” and “T” refer to original orbit (i.e., not the transfer orbit).

Note 1: the first equation linearizes the effect on orbital period of a small change 
in semi-major axis.

Note 2 : norgT = 2π, so norg = 2π/T (easier here than the standard norg=√(µ/a3) ).

Note 3: Ttotal = N×T of course.



Illustration: 2aT=a+a+∆a � aT=a+∆a/2. r1 = a. Velocity change for entering 
transfer orbit is identical to first step in Hohmann transfer (cf. sheets 43,44). 
Return from transfer orbit to original circular orbit requires exactly the same ∆V. 
Velocity in pericenter follows from vis-viva equation.



Full linearization for small changes in orbits (to save propellant).

Parameter ”a” refers to original orbit; parameter “aT” refers to the transfer orbit. 
The terms between brackets are expanded with a Taylor series, with first 2 terms 
only (1+ε)k ~ 1+kε +O(ε2) for ε<<1.

The maneuver is given twice, so the value for ∆V here is the total amount 
required. The last equation follows from the equations of a Hohmann transfer.



Compare results with required ∆V to transfer to graveyard orbit, or ∆V to 
compensate for 3rd-body perturbations from Sun and Moon (total 51 m/s/yr).

Computation propellant mass: Tsiolkovsky, with dry mass satellite assumed to be 
2000 kg and Isp = 300 sec.



Answers:  (DID YOU TRY??)

2 days: ∆a = 735.8 km, ∆V = 53.8 m/s, mprop = 9.2 kg

5 days: ∆a = 294.3 km, ∆V = 21.5 m/s, mprop = 3.7 kg

10 days: ∆a = 147.2 km, ∆V = 10.8 m/s, mprop = 1.8 kg

30 days: ∆a = 49.1 km, ∆V = 3.6 m/s, mprop = 0.6 kg

60 days: ∆a = 24.5 km, ∆V = 1.8 m/s, mprop = 0.3 kg


