Flight and Orbital Mechanics

Lecture slides

1

Example: Ariane 5

Questions:

- what is the payload of this launcher?
- why does it have 2 stages and 2 boosters?
- what are the characteristics of each stage?

[Arianespace, 2010]

. . . .

Overview

- Ideal single-stage launcher
- Ideal multi-stage launcher
- Real single-stage launcher (gravity, atmosphere)
- Real multi-stage launcher (idem)
- Overall performance (Pegasus)
- Design (Pegasus)

Learning goals

The student should be able to:

- derive, describe and explain Tsiolkovsky's equation
- describe and explain the concept of a multi-stage launcher and quantify its performance
- describe and quantify the performance of a launcher in realistic conditions, *i.e.*, under the influence of gravity and drag
- make a 1st-order design of a new launcher from scratch

• ...

Lecture material:

these slides (incl. footnotes)

Principles

Principles + performance ideal rocket: partial recap of ae1-102

Principles (cnt'd)

- vehicle contains payload, structure, propellant
- exhaust velocity propellant w
- conservation of momentum of system
- vehicle accelerates

Principles (cnt'd)

- system = launcher + expelled propellant
- momentum system = constant

$$M \frac{dV}{dt} = -\frac{dM}{dt} w$$

Solidification Principle:

$$F = M a = M \frac{dV}{dt} = m w$$

- M = instantaneous mass of rocket [kg]
- m = expelled (gaseous) mass per unit of time, or mass flow [kg/s]

1

- V = <u>inertial</u> velocity of launcher [m/s]
- $w = \frac{\text{relative}}{\text{TUDefft}}$ exhaust velocity of expelled propellant [m/s]

Ideal single stage rocket

Equation of motion (vacuum, no gravity):

$$M \frac{dV}{dt} = -\frac{dM}{dt} w$$

Integration:

$$\Delta V = w \ln \left(\frac{M_{begin}}{M_{end}} \right)$$

Tsiolkovsky's Equation (a.k.a. "the rocket equation")

Note:
$$w = I_{sp} g_0$$

Ideal single stage rocket (cnt'd)

Characteristic parameters:

thrust-to-weight ratio:

$$\Psi_0 = \frac{F}{M_0 g_0}$$

• mass ratio:

$$\Lambda = \frac{M_{begin}}{M_{end}}$$

So:

TUDelft

- burn time:
- end velocity
- burnout altitude:

$$t_b = \frac{M_{begin} - M_{end}}{m} = \frac{I_{sp}}{\Psi_0} \left(1 - \frac{1}{\Lambda}\right)$$
$$V_{end} = I_{sp} g_0 \ln(\Lambda)$$
$$s_{end} = \frac{g_0 I_{sp}^2}{\Psi_0} \left(1 - \frac{\ln(\Lambda) - 1}{\Lambda}\right)$$

Ideal single stage rocket (cnt'd)

	"normal" impulsive shot *				
٨	M _{begin} / M _{end}				
t _b	$(\mathrm{I_{sp}} \ / \ \Psi_0) \ (1 - 1 / \Lambda)$	0			
Ψ_0	F / (M ₀ g ₀)	8			
V _{end}	$I_{sp} g_0 \ln(\Lambda)$				
S _{end}	$g_0 I_{sp}^2 / \Psi_0 (1 - (ln(\Lambda)-1)/\Lambda)$	0			

*: impulsive shot: all propellants are ejected in 1 instant

Ideal single stage rocket (cnt'd)

Do not forget (cf. ae1-102):

- Ψ₀ > 1
- structural loading at burnout

Definition of parameters:

- M_{total} = total mass (*i.e.*, before firing)
- M_{payload} = payload mass (
- M_{constr} = construction mass ()
- M_{prop} = propellant mass (____)

•
$$M_{begin} = M_{total} = M_{payload} + M_{constr} + M_{prop}$$

•
$$M_{end} = M_{payload} + M_{constr}$$

TUDelft

Ideal multi-stage rocket

$$\Delta V = g_0 I_{sp} \ln \left(\frac{M_{total}}{M_{total} - M_{prop}} \right)$$

$$\Delta V = g_0 I_{sp} \ln \left(\frac{M_{total}}{M_{constr} + M_{payload}} \right)$$

$$\frac{M_{constr}}{M_{total}} + \frac{M_{payload}}{M_{total}} = \exp\left(\frac{-\Delta V}{I_{sp} g_0}\right)$$

Example 1: $\Delta V = 10 \text{ km/s}, \text{ I}_{\text{sp}} = 400 \text{ s}, \text{ M}_{\text{constr}}/\text{M}_{\text{total}} = 8 \%,$ $\text{M}_{\text{payload}} = 500 \text{ kg} \rightarrow$

•
$$M_{total} = M_{begin} = ???$$

Example 1 (cnt'd):

NO SOLUTION !

Options:

- reduce required M_{payload}
- use engine/propellant with higher I_{sp}
- use lighter construction
- multi-staging

18

Example 3 (cnt'd):

 $\Delta V = 10 \text{ km/s, } I_{sp} = 500 \text{ s, } M_{constr}/M_{total} = 8 \%,$ $M_{payload} = 500 \text{ kg} \rightarrow$

- $M_{payload}/M_{total} = 0.0502$
- $M_{total} = M_{begin} = 9960 \text{ kg}$
- M_{constr} = 797 kg
- M_{prop} = 8663 kg
- $M_{prop}/M_{total} = 87.0 \%$

TUDel1 OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Example 4:

 $\Delta V = 10 \text{ km/s, } I_{sp} = 400 \text{ s, } M_{constr}/M_{total} = 4 \%,$ $M_{payload} = 500 \text{ kg} \rightarrow$

20

Example 4 (cnt'd):

 $\Delta V = 10 \text{ km/s, } I_{sp} = 400 \text{ s, } M_{constr}/M_{total} = 4 \%,$ $M_{payload} = 500 \text{ kg} \rightarrow$

- $M_{payload}/M_{total} = 0.0382$
- $M_{total} = M_{begin} = 13089 \text{ kg}$
- M_{constr} = 524 kg
- M_{prop} = 12065 kg

TUDel1

• $M_{prop}/M_{total} = 92.2 \%$

Example 6a:

$$\Delta V = 5 \text{ km/s}, I_{sp} = 400 \text{ s}, M_{constr}/M_{total} = 8 \%,$$

 $M_{payload} = 500 \text{ kg} \rightarrow$

•
$$M_{payload}/M_{total} = 0.1997$$

•
$$M_{total} = M_{begin} = 2504 \text{ kg}$$

- M_{constr} = 200 kg
- M_{prop} = 1804 kg

″UDel1

• $M_{prop}/M_{total} = 72.0 \%$

23

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Example 6b:

$$\Delta V = 5 \text{ km/s}$$
, $I_{sp} = 400 \text{ s}$, $M_{constr}/M_{total} = 8 \%$,
 $M_{payload} = 2504 \text{ kg} \rightarrow$

•
$$M_{payload}/M_{total} = 0.1997$$

•
$$M_{total} = M_{begin} = 12,539 \text{ kg}$$

- $M_{constr} = 1003 \text{ kg}$
- M_{prop} = 9032 kg

″UDel1

• $M_{prop}/M_{total} = 72.0 \%$

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Add numbers examples 6a+b:

	Example 6a	Example 6b	total
ΔV [km/s]	5.0	5.0	10.0
M _{prop} [kg]	1804	9032	10836
M _{constr} [kg]	200	1003	1203
M _{payload} [kg] 500		2504	500
M _{total} [kg]	2504	12539	12539
	stage 2	stage 1	

Compare examples:

	Example 1	Example 3	Example 4	Example 6a+b			
ΔV [km/s]	10.0						
M _{payload} [kg]	500						
I _{sp} [s]	400	500	400	400			
M _{constr} /M _{total} [%]	8	8	4	8			
# stages	1	1	1	2			
M _{prop} [kg]	n.a.	8663	12065	10836			
M _{constr} [kg]	n.a.	797	524	1203			
M _{total} [kg]	n.a.	9960	13089	12539			

TUDelft

AE2104 Flight and Orbital Mechanics 26 |

Conclusion: 50% gain in payload (ratio) !!

Multi-staging:

Advantages:

• no need to accelerate total construction mass until final velocity \rightarrow upper stages perform more efficiently

o more payload capacity

o more ΔV capacity

Disadvantages:

- more complexity (engines, piping, ...)
 - more risk (jettison, ignition, ...)

Definition of parameters:

- M_{total,i} = total mass of stage "i" (*i.e.*, before firing)
- M_{payload,i} = payload mass of stage "i"
- M_{constr,i} = construction mass of stage "i"
- M_{prop,i} = propellant mass of stage "i"
- Note: M_{payload,i} = M_{total,i+1}

Tsiolkovsky, single stage:

$$\Delta V = I_{sp} g_0 \ln \left(\frac{M_{begin}}{M_{end}} \right)$$

define

$$p = M_{payload} / M_{begin}$$

 $\sigma = M_{constr} / M_{prop}$

then

$$\frac{M_{begin}}{M_{end}} = \frac{M_{payload} + M_{constr} + M_{prop}}{M_{payload} + M_{constr}} = \frac{1 + \sigma}{p + \sigma}$$

SO

$$\Delta V = I_{sp} g_0 \ln \left(\frac{1 + \sigma}{p + \sigma} \right)$$
 (after [Fortescue, Stark Swinerd, 2003])

&

Derivation of 4th equation on previous sheet:

$$M_{payload} = p M_{begin}$$
 and $M_{constr} = \sigma M_{prop}$

so

$$M_{begin} = p M_{begin} + M_{constr} + M_{prop}$$

which becomes

$$(1-p) M_{begin} = M_{constr} + M_{prop} = (\sigma+1) M_{prop}$$

or

$$M_{begin} = \frac{1+\sigma}{1-p} M_{prop}$$

mass ratio for Tsiolkovsky's equation :

$$\frac{M_{begin}}{M_{end}} = \frac{\frac{1+\sigma}{1-p}M_{prop}}{p\frac{1+\sigma}{1-p}M_{prop}+\sigma M_{prop}} = \frac{\frac{1+\sigma}{1-p}}{p\frac{1+\sigma}{1-p}+\sigma} = \frac{1+\sigma}{p(1+\sigma)+\sigma(1-p)} = \frac{1+\sigma}{p+p\sigma+\sigma-p\sigma} = \frac{1+\sigma}{p+\sigma}$$

stage "i" only :

$$\Delta V_i = I_{sp,i} g_0 \ln \left(\frac{1 + \sigma_i}{p_i + \sigma_i} \right)$$

total launcher:

$$\Delta V_{tot} = \sum \Delta V_i = \sum I_{sp,i} g_0 \ln \left(\frac{1 + \sigma_i}{p_i + \sigma_i} \right)$$

assume

$$I_{sp,i} = I_{sp}$$
$$\sigma_i = s$$

SO

$$\Delta V_{tot} = \sum I_{sp} g_0 \ln \left(\frac{1+s}{p_i + s} \right)$$
 (after [Fortescue, Stark Swinerd, 2003])

& Swillera, 2005])

by definition :

$$P_{tot} = p_1 \times p_2 \times p_3 \times \dots \times p_N = \prod p_i$$

optimal solution (w.o.derivation):

$$p_i = \sqrt[N]{P_{tot}}$$

SO

$$\Delta V_{tot} = I_{sp} g_0 N \{ \ln(1+s) - \ln(s + N_{tot}) \}$$

(after [Fortescue, Stark & Swinerd, 2003])

- 4 stages: ΔV/(I_{sp}g₀) 2.0 5.5 (factor 2.8)
- staging very attractive (for modest P)
- **4** high P: gain multi-staging limited (\rightarrow 2 stages for Ariane-5, Delta IV, Titan V, ...) real challenge!

35 |

Question 1

The performance of a rocket (*i.e.*, the ΔV that can be obtained) is determined by the ratio M_{begin}/M_{end} , amongst others. New parameters "p" and " σ " can be defined: $p=M_{payload}/M_{begin}$ and $\sigma=M_{constr}/M_{prop}$.

Derive the following equation:

 $M_{begin}/M_{end} = (1+\sigma)/(p+\sigma)$

Question 2

The performance of a rocket (*i.e.*, the ΔV that can be obtained) is determined by the ratio $M_{\text{begin}}/M_{\text{end}}$, amongst others. New parameters "p_i" and " σ_i " can be defined for each possible stage "i": $p_i = M_{\text{payload},i}/M_{\text{begin},i}$ and $\sigma_i = M_{\text{constr},i}/M_{\text{prop},i}$.

Derive the following equation which holds for an arbitrary number of stages N (where it is assumed that the parameters σ_i are equal to "s" for all stages, and the payload fractions of all stages p_i are equal to $(N)\sqrt{P_{tot}}$ (*i.e.*, the Nth root of P_{tot}):

$$\Delta V_{tot} = I_{sp} g_0 N \{ \ln(1+s) - \ln(s + \sqrt[N]{P_{tot}}) \}$$

Question 3

Given the equation

$$\Delta V_{tot} = I_{sp} g_0 N \{ \ln(1+s) - \ln(s + \sqrt[N]{P_{tot}}) \}$$

- 1. What do the various parameters represent?
- 2. What does the equation express?
- 3. Make a sketch of the behaviour of $\Delta V_{tot}/(I_{sp} g_0)$ as a function of parameter N, for the case $P_{tot} = 0.001$ and the case $P_{tot} = 0.010$ (parameter "s" is equal to 10%). Clearly indicate the (range of) numerical values for $\Delta V_{tot}/(I_{sp} g_0)$.
- 4. Discuss the consequences of increasing N for both cases of P_{tot}

In direction of flight: $M dV/dt = F \cos(\alpha + \delta) - M g \sin(\gamma) - D$

In direction of flight: $M dV/dt = F \cos(\alpha + \delta) - M g \sin(\gamma) - D$

- Thrust misalignment: $\alpha + \delta \neq 0^{\circ}$ 1. (α needed to counteract gravity, δ for steering \rightarrow cannot be avoided)
- 2. Gravity loss: $\gamma \neq 0^{\circ}$ (launcher lifts off in vertical direction \rightarrow unavoidable)
- 3. Drag loss: $D \neq 0$ (first part of trajectory through atmosphere \rightarrow unavoidable)

vertical flight :

$$dV = -w\frac{dM}{M} - g\,dt - \frac{D}{M}dt$$

integration:

$$V_{end} = -\int w \frac{dM}{M} - \int g \, dt - \int \frac{D}{M} dt =$$
$$= V_{end,ideal} - \Delta V_g - \Delta V_d$$

where

$$V_{end,ideal} = I_{sp} g_0 \ln(\Lambda)$$
$$\Delta V_g = g_0 t_b$$

velocity at burnout:

$$V_{burnout} = I_{sp} g_0 \left[\ln(\Lambda) - \frac{1}{\Psi_0} \left(1 - \frac{1}{\Lambda} \right) \right]$$

- including gravity losses
- w/o drag losses

altitude at burnout:

$$h_{burnout} = \frac{I_{sp}^2 g_0}{\Psi_0} \left[\left(1 - \frac{\ln(\Lambda) + 1}{\Lambda} \right) - \frac{1}{2\Psi_0} \left(1 - \frac{1}{\Lambda} \right)^2 \right]$$

altitude at culmination:

$$h_{culm} = \frac{I_{sp}^2 g_0}{\Psi_0} \left(\frac{1}{2}\Psi_0 \ln^2(\Lambda) - \ln(\Lambda) - \frac{1}{\Lambda} + 1\right)$$

time until culmination:

t_{culm}

 $= I_{sp} \ln(\Lambda)$

nics

42

Data:

- specific impulse $I_{sp} = 300 s$
- Ψ₀ = 1.5

Results:

	w/o gravity	with gravity	
burn time [s]	160.0		
burnout velocity [m/s]	4736.6	3167.0	
burnout height [km]	281.4	155.8	
culmination time [s]	-	482.8	
culmination height [km]	-	667.0	
culmination height for impulsive shot [km]	-	1143.5	

Culmination altitudes of single-stage launchers, for $I_{sp} = 200$ s (left) and 400 s (right). Maximum acceleration = 10g.

TUDelft

AE2104 Flight and Orbital Mechanics 44 |

Gravity loss: minimize by shifting to horizontal flight a.s.a.p.

Drag loss: minimize by reducing trajectory through atmosphere

CONFLICT !!

Solution 1: start in vertical directory, then turn to (more) horizontal direction.

Solution 2: use air-launched vehicle.

TEZIO E ENGLI UNA OFDITAL ELCHANICO

Example: Pegasus

Requirements [OSC, 2003]:

- maximum payload 455 kg into LEO
- cost-effective
- reliable
- flexible
- minimum ground support
- multiple payload capability
- short lead time
- (released at 12 km altitude)

[OSC, 2010]

AE2104

46

Example: Pegasus (cnt'd)

Pegasus XL mission profile [OSC, 2007]

Overall performance

[OSC, 2000]

Can we (easily) reproduce these numbers?

AE2104 Flight and Orbital Mechanics

48

Specific energy (*i.e.*, energy per unit of mass):

$$E_{\text{orbit}} = E_{\text{pot,begin}} + E_{\text{kin,eff}} - \Delta E_{\text{pot}}$$

- E_{orbit} = total energy in orbit (sum of kinetic+potential)
- E_{pot,begin} = potential energy at launch
- $E_{kin,eff}$ = effective kinetic energy
- $\Delta E_{pot} = gain in potential energy$

Substitution:

$$-\frac{\mu}{2a} = -\frac{\mu}{R_{e} + h_{launch}} + \frac{1}{2} \left(V_{0} + \Delta V_{1} + \Delta V_{2} + \Delta V_{3} - \Delta V_{d+g} \right)^{2} - \left(-\frac{\mu}{a} + \frac{\mu}{R_{e} + h_{launch}} \right)^{2}$$

- μ = gravitational parameter Earth
- a = semi-major axis of orbit
- $h_{\text{launch}} = \text{altitude of launch platform}$
- V_0 = velocity of launch platform
- $\Delta V_{1,2,3}$ = velocity increment delivered by stage 1,2,3
- $\mathcal{I}_{UDelft} \bullet \Delta V_{d+g}$ velocity loss due to atmosphere and gravity

Pegasus vehicle:

stage	I _{sp} [s]	M _{prop} [kg]	M _{constr} [kg]	M _{begin} [kg]
3	289.3	770	126	$M_{payload} + M_{prop,3} + M_{constr,3}$
2	291.3	3925	416	$M_{begin,3} + M_{prop,2} + M_{constr,2}$
1	295.9	15014	1369	$M_{begin,2} + M_{prop,1} + M_{constr,1}$

 \rightarrow a = f(i, δ_{launch} , h_{launch} , payload mass)

[Wertz&Larson, 1991]:

- Drag+gravity losses 1.5-2.0 km/s
- Drag loss: 0.3 km/s

Pegasus: small launcher \rightarrow

- Drag+gravity losses 1.5 km/s
- Drag loss 0.3 km/s
- Gravity loss 1.5 0.3 = 1.2 km/s

Results for launches due East from KSC (δ =28.5°) and WTR (δ =34.6°):

Orbit altitude as a function of carrier velocity ($M_{payload} = 300 \text{ kg}$, launch at equator):

Pegasus capability for 300 kg payload

54 |

Can we (easily) reproduce the overall layout of a launcher?

Example: Pegasus

Some data and assumptions:

- 3 stages
- I_{sp} identical for all stages (290 s)
- M_{constr}/M_{total} identical for all stages (0.08)
- $V_c = 7.784$ km/s at h=200 km
- $V_{earth} = 0.464$ km/s at equator
- $V_{carrier} = 0.222 \text{ km/s w.r.t. Earth}$

•
$$\rightarrow$$
 V_{pegasus,initial} = 0.686 km/s

$$4 = 7.784 - 0.686 = 7.098 \text{ km/s}$$

- Drag loss 0.3 km/s
- Gravity loss 1.2 km/s

1st order approach:

- ΔV_{ideal} equally distributed over 3 stages
- Drag loss on account of 1st stage
- Gravity loss equally distributed over 3 stages

→

- Stage 1: $\Delta V = 2.366 + 0.3 + 0.4 = 3.066$ km/s
- Stage 2 and 3: $\Delta V = 2.366 + 0.4 = 2.766$ km/s (each)

Tsiolkovsky's rocket equation:

$$\Delta V = g_0 I_{sp} \ln \left(\frac{M_{total}}{M_{total} - M_{prop}} \right)$$

$$\Delta V = g_0 I_{sp} \ln \left(\frac{M_{total}}{M_{constr} + M_{payload}} \right)$$

$$\frac{M_{constr}}{M_{total}} + \frac{M_{payload}}{M_{total}} = \exp\left(\frac{-\Delta V}{I_{sp} g_0}\right)$$

Stage 3:

 $M_{payload} = 455 \text{ kg}, I_{sp} = 290 \text{ s}, M_{constr} / M_{total} \sim 0.08$:

so:

- $M_{total} = 1526 \text{ kg}$
- $M_{constr} = 122 \text{ kg}$
- $M_{payload} = 455 \text{ kg}$
- $M_{prop} = 949 \text{ kg}$

Next: total mass of stage 3 is equal to payload mass of stage 2.

ار ر

	stage 3			stage 2			stage 1		
	re-eng	real	Δ	re-eng	real	Δ	re-eng	real	Δ
	[kg]	[kg]	[%]	[kg]	[kg]	[%]	[kg]	[kg]	[%]
payload	455	455	0.0	1526	1351	12.9	5116	5692	-10.1
constr.	122	126	-3.1	409	416	-1.6	1572	1369	14.8
prop.	949	770	23.2	3181	3925	-19.0	12961	15014	-13.7
total	1526	1351	12.9	5116	5692	-10.1	19649	22075	-11.0

Further reading

- Koelle, D.E., Cost Analysis of Present Expendable Launch Vehicles as contribution to Low Cost Access to Space Study. In: (2nd ed.), *Technical Note TCS-TN-147* (96), TransCostSystems, Ottobrun, Germany (December 1966).
- Parkinson, R.C., Total System Costing of Risk in a Launch Vehicle. In: *44th International Astronautical Congress* (2nd ed.), *AA-6.1-93-735* (16–22 Oct., 1993)
 Graz, Austria .
- Isakowitz, S.J.. In: (2nd ed.), *International Reference Guide to Space Launch Systems*, American Institute for Aeronautics and Astronautics, Washington DC (1991).
- "ESA Launch Vehicle Catalogue", *European Space Agency, Paris, Revision 8: December 1997*.
- http://www.orbital.com info on Pegasus, Taurus and Minotaur
- users.commkey.net/Braeunig/space/specs/pegasus.htm
- <u>http://arianespace.com/english/leader_launches/html</u>

UDeltt

<u>http://www.boeing.com/defence-space/space/delta/record.htm</u>)