Flight and Orbital Mechanics

Lecture slides

Third Stage Burnout and Orbital Insertion
$\mathrm{t}=663 \mathrm{sec}$
$\mathrm{h}=400 \mathrm{nmi}$
$\mathrm{v}=24,550 \mathrm{fps}$
$\gamma=0.0 \mathrm{deg}$
Second Stage
Second/Third

Burnout

$$
\begin{aligned}
& \mathrm{t}=161.9 \mathrm{sec} \\
& \mathrm{~h}=630,900 \mathrm{ft} \\
& \mathrm{v}=18,020 \mathrm{fps}
\end{aligned}
$$

Second Stage Ignition

$$
\begin{aligned}
& \mathrm{t}=88.7 \mathrm{sec} \\
& \mathrm{~h}=230,300 \mathrm{ft} \\
& \mathrm{v}=8,210 \mathrm{fps}
\end{aligned}
$$

Payload Fairing Separation
$\mathrm{t}=121.1 \mathrm{sec}$
$\mathrm{h}=366,300 \mathrm{ft}$
$\mathrm{v}=11,200 \mathrm{fps}$

Flight and Orbital Mechanics
AE2-104, lecture hours 25+26: Launchers

Ron Noomen

October 1, 2012

Example: Ariane 5

Questions:

- what is the payload of this launcher?
- why does it have 2 stages and 2 boosters?
- what are the characteristics of each stage?
[Arianespace, 2010]

Overview

- Ideal single-stage launcher
- Ideal multi-stage launcher
- Real single-stage launcher (gravity, atmosphere)
- Real multi-stage launcher (idem)
- Overall performance (Pegasus)
- Design (Pegasus)

Learning goals

The student should be able to:

- derive, describe and explain Tsiolkovsky's equation
- describe and explain the concept of a multi-stage launcher and quantify its performance
- describe and quantify the performance of a launcher in realistic conditions, i.e., under the influence of gravity and drag
- make a $1^{\text {stt-order }}$ design of a new launcher from scratch
-

Lecture material:

- these slides (incl. footnotes)

Principles

Principles + performance ideal rocket: partial recap of ae1-102

Principles (cnt'd)

before

- vehicle contains payload, structure, propellant
- exhaust velocity propellant w
- conservation of momentum of system
- vehicle accelerates

Principles (cnt'd)

- system = launcher + expelled propellant
- momentum system = constant

$$
M \frac{d V}{d t}=-\frac{d M}{d t} w
$$

Solidification Principle:

$$
F=M a=M \frac{d V}{d t}=m w
$$

- $M=$ instantaneous mass of rocket [kg]
- $m=$ expelled (gaseous) mass per unit of time, or mass flow [kg/s]
- $\mathrm{V}=$ inertial velocity of launcher [m/s]

Ideal single stage rocket

Equation of motion (vacuum, no gravity):

$$
M \frac{d V}{d t}=-\frac{d M}{d t} w
$$

Integration:

$$
\Delta V=w \ln \left(\frac{M_{\text {begin }}}{M_{\text {end }}}\right)
$$

Tsiolkovsky's Equation (a.k.a. "the rocket equation")
Note: $w=I_{\text {sp }} g_{0}$

Ideal single stage rocket (cnt'd)

Characteristic parameters:

- thrust-to-weight ratio:

$$
\Psi_{0}=\frac{F}{M_{0} g_{0}}
$$

- mass ratio:

$$
\Lambda=\frac{M_{\text {begin }}}{M_{\text {end }}}
$$

So:

- burn time:
- end velocity
- burnout altitude:

$$
\begin{aligned}
& t_{b}=\frac{M_{\text {begin }}-M_{\text {end }}}{m}=\frac{I_{s p}}{\Psi_{0}}\left(1-\frac{1}{\Lambda}\right) \\
& V_{\text {end }}=I_{s p} g_{0} \ln (\Lambda) \\
& s_{\text {end }}=\frac{g_{0} I_{s p}^{2}}{\Psi_{0}}\left(1-\frac{\ln (\Lambda)-1}{\Lambda}\right)
\end{aligned}
$$

Ideal single stage rocket (cnt'd)

	"normal"	impulsive shot *
Λ	$M_{\text {begin }} / M_{\text {end }}$	
t_{b}	$\left(\mathrm{I}_{\mathrm{sp}} / \Psi_{0}\right)(1-1 / \Lambda)$	0
Ψ_{0}	$\mathrm{~F} /\left(\mathrm{M}_{0} \mathrm{~g}_{0}\right)$	∞
$V_{\text {end }}$	$\mathrm{I}_{\mathrm{sp}} \mathrm{g}_{0} \ln (\Lambda)$	
$\mathrm{S}_{\text {end }}$	$\mathrm{g}_{0} \mathrm{I}_{\mathrm{sp}}{ }^{2} / \Psi_{0}(1-(\ln (\Lambda)-1) / \Lambda)$	0

*: impulsive shot: all propellants are ejected in 1 instant

Ideal single stage rocket (cnt'd)

Do not forget (cf. ae1-102):

- $\Psi_{0}>1$
- structural loading at burnout

Ideal multi-stage rocket (cnt'd)

Definition of parameters:

- $M_{\text {total }}=$ total mass (i.e., before firing)
- $M_{\text {payload }}=$ payload mass (\square)
- $\mathrm{M}_{\text {constr }}=$ construction mass (\square)
- $M_{\text {prop }}=$ propellant mass (\square)

- $M_{\text {begin }}=M_{\text {total }}=M_{\text {payload }}+M_{\text {constr }}+M_{\text {prop }}$
- $M_{\text {end }}=M_{\text {payload }}+M_{\text {constr }}$

Ideal multi-stage rocket

$$
\begin{aligned}
& \Delta V=g_{0} I_{s p} \ln \left(\frac{M_{\text {total }}}{M_{\text {total }}-M_{\text {prop }}}\right) \\
& \Delta V=g_{0} I_{s p} \ln \left(\frac{M_{\text {total }}}{M_{\text {constr }}+M_{\text {payload }}}\right) \\
& \frac{M_{\text {constr }}}{M_{\text {total }}}+\frac{M_{\text {payload }}}{M_{\text {total }}}=\exp \left(\frac{-\Delta V}{I_{s p} g_{0}}\right)
\end{aligned}
$$

Ideal multi-stage rocket (cnt'd)

Example 1:

$\Delta \mathrm{V}=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=400 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%$, $M_{\text {payload }}=500 \mathrm{~kg} \rightarrow$

- $M_{\text {total }}=M_{\text {begin }}=$???
- $M_{\text {prop }}=$???
- $\mathrm{M}_{\text {constr }}=$???

Ideal multi-stage rocket (cnt'd)

Example 1 (cnt'd):

Ideal multi-stage rocket (cnt'd)

Options:

- reduce required $M_{\text {payload }}$
- use engine/propellant with higher I_{sp}
- use lighter construction
- multi-staging

Ideal multi-stage rocket (cnt'd)

Example 2: $\Delta \mathrm{V}=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\text {sp }}=400 \mathrm{~s}$, $\mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%, \mathrm{M}_{\text {payload }}=250 \mathrm{~kg}$

Ideal multi-stage rocket (cnt'd)

Example 3:
$\Delta \mathrm{V}=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=500 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%$, $M_{\text {payload }}=500 \mathrm{~kg} \Rightarrow$

Ideal multi-stage rocket (cnt'd)

Example 3 (cnt'd):
$\Delta \mathrm{V}=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=500 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%$, $M_{\text {payload }}=500 \mathrm{~kg} \rightarrow$

- $\mathrm{M}_{\text {payload }} / \mathrm{M}_{\text {total }}=0.0502$
- $M_{\text {total }}=M_{\text {begin }}=9960 \mathrm{~kg}$
- $\mathrm{M}_{\text {constr }}=797 \mathrm{~kg}$
- $M_{\text {prop }}=8663 \mathrm{~kg}$
- $M_{\text {prop }} / M_{\text {total }}=87.0 \%$

Ideal multi-stage rocket (cnt'd)

Example 4:

$$
\begin{aligned}
& \Delta V=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=400 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=4 \%, \\
& \mathrm{M}_{\text {payload }}=500 \mathrm{~kg} \rightarrow
\end{aligned}
$$

Ideal multi-stage rocket (cnt'd)

Example 4 (cnt'd):
$\Delta \mathrm{V}=10 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=400 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=4 \%$, $M_{\text {payload }}=500 \mathrm{~kg} \rightarrow$

- $M_{\text {payload }} / M_{\text {total }}=0.0382$
- $M_{\text {total }}=M_{\text {begin }}=13089 \mathrm{~kg}$
- $\mathrm{M}_{\text {constr }}=524 \mathrm{~kg}$
- $M_{\text {prop }}=12065 \mathrm{~kg}$
- $M_{\text {prop }} / M_{\text {total }}=92.2 \%$

Ideal multi-stage rocket (cnt'd)

Example 5: no construction mass

Ideal multi-stage rocket (cnt'd)

Example 6a:
$\Delta \mathrm{V}=5 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=400 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%$, $M_{\text {payload }}=500 \mathrm{~kg} \rightarrow$

- $\mathrm{M}_{\text {payload }} / \mathrm{M}_{\text {total }}=0.1997$
- $M_{\text {total }}=M_{\text {begin }}=2504 \mathrm{~kg}$
- $\mathrm{M}_{\text {constr }}=200 \mathrm{~kg}$
- $M_{\text {prop }}=1804 \mathrm{~kg}$
- $M_{\text {prop }} / M_{\text {total }}=72.0 \%$

$\underset{\text { TUDell }}{\frac{5}{2}}$

Ideal multi-stage rocket (cnt'd)

Example 6b:
$\Delta \mathrm{V}=5 \mathrm{~km} / \mathrm{s}, \mathrm{I}_{\mathrm{sp}}=400 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}=8 \%$,
$M_{\text {payload }}=2504 \mathrm{~kg} \rightarrow$

- $\mathrm{M}_{\text {payload }} / \mathrm{M}_{\text {total }}=0.1997$
- $M_{\text {total }}=M_{\text {begin }}=12,539 \mathrm{~kg}$
- $\mathrm{M}_{\text {constr }}=1003 \mathrm{~kg}$
- $M_{\text {prop }}=9032 \mathrm{~kg}$
- $M_{\text {prop }} / M_{\text {total }}=72.0 \%$

Ideal multi-stage rocket (cnt'd)

Add numbers examples 6a+b:

	Example 6a	Example 6b	total
$\Delta \mathrm{V}[\mathrm{km} / \mathrm{s}]$	5.0	5.0	10.0
$M_{\text {prop }}[\mathrm{kg}]$	1804	9032	10836
$M_{\text {constr }}[\mathrm{kg}]$	200	1003	1203
$M_{\text {payload }}[\mathrm{kg}]$	500	2504	500
$M_{\text {total }}[\mathrm{kg}]$	2504	12539	12539
	stage 2	stage 1	

Ideal multi-stage rocket (cnt'd)

Compare examples:

	Example 1	Example 3	Example 4	Example $6 a+b$
$\Delta V[\mathrm{~km} / \mathrm{s}]$	10.0			
$\mathrm{M}_{\text {payload }}[\mathrm{kg}]$	500			
$\mathrm{I}_{\text {sp }}[\mathrm{s}]$	400	500	400	400
$\mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}[\%]$	8	8	4	8
$\#$ stages	1	1	1	2
$\mathrm{M}_{\text {prop }}[\mathrm{kg}]$	n.a.	8663	12065	10836
$\mathrm{M}_{\text {constr }}[\mathrm{kg}]$	n.a.	797	524	1203
$\mathrm{M}_{\text {total }}[\mathrm{kg}]$	n.a.	9960	13089	12539

Ideal multi-stage rocket (cnt'd)

Compare examples:

Conclusion: 50\% gain in payload (ratio) !!

Ideal multi-stage rocket (cnt'd)

Multi-staging:

Advantages:

- no need to accelerate total construction mass until final velocity \rightarrow upper stages perform more efficiently
o more payload capacity
o more $\Delta \mathrm{V}$ capacity

Disadvantages:
fiuc

- more complexity (engines, piping, ...)
- more risk (jettison, ignition, ...)

Ideal multi-stage rocket (cnt'd)

Definition of parameters:

- $M_{\text {total, }, ~}=$ total mass of stage "i" (i.e., before firing)
- $M_{\text {payload, } i}=$ payload mass of stage " i "
- $M_{\text {constr,i }}=$ construction mass of stage " i "
- $M_{\text {prop, } i}=$ propellant mass of stage " i "
- Note: $\mathrm{M}_{\text {payload, }, \mathrm{i}}=\mathrm{M}_{\text {total, }, \mathrm{i}+1}$

Ideal multi-stage rocket (cnt'd)

Stage 1

green = payload

Ideal multi-stage rocket (cnt'd)

Tsiolkovsky, single stage:

$$
\Delta V=I_{s p} g_{0} \ln \left(\frac{M_{\text {begin }}}{M_{\text {end }}}\right)
$$

define

$$
\begin{aligned}
p & =M_{\text {payload }} / M_{\text {begin }} \\
\sigma & =M_{\text {constr }} / M_{\text {prop }}
\end{aligned}
$$

then

$$
\frac{M_{\text {begin }}}{M_{\text {end }}}=\frac{M_{\text {payload }}+M_{\text {constr }}+M_{\text {prop }}}{M_{\text {payload }}+M_{\text {constr }}}=\frac{1+\sigma}{p+\sigma}
$$

SO

$$
\Delta V=I_{s p} g_{0} \ln \left(\frac{1+\sigma}{p+\sigma}\right)
$$

(after [Fortescue, Stark \&
Swinerd, 2003])

Ideal multi-stage rocket (cnt'd)

Derivation of $4^{\text {th }}$ equation on previous sheet:

$$
M_{\text {payload }}=p M_{\text {begin }} \text { and } M_{\text {constr }}=\sigma M_{\text {prop }}
$$

so

$$
M_{\text {begin }}=p M_{\text {begin }}+M_{\text {constr }}+M_{\text {prop }}
$$

which becomes

$$
(1-p) M_{\text {begin }}=M_{\text {constr }}+M_{\text {prop }}=(\sigma+1) M_{\text {prop }}
$$

or

$$
M_{\text {begin }}=\frac{1+\sigma}{1-p} M_{\text {prop }}
$$

mass ratio for Tsiolkovsky's equation :

$$
\frac{M_{\text {begin }}}{M_{\text {end }}}=\frac{\frac{1+\sigma}{1-p} M_{\text {prop }}}{p \frac{1+\sigma}{1-p} M_{\text {prop }}+\sigma M_{\text {prop }}}=\frac{\frac{1+\sigma}{1-p}}{p \frac{1+\sigma}{1-p}+\sigma}=\frac{1+\sigma}{p(1+\sigma)+\sigma(1-p)}=\frac{1+\sigma}{p+p \sigma+\sigma-p \sigma}=\frac{1+\sigma}{p+\sigma}
$$

Ideal multi-stage rocket (cnt'd)

stage"i" only:

$$
\Delta V_{i}=I_{s p, i} g_{0} \ln \left(\frac{1+\sigma_{i}}{p_{i}+\sigma_{i}}\right)
$$

total launcher :

$$
\Delta V_{t o t}=\sum \Delta V_{i}=\sum I_{s p, i} g_{0} \ln \left(\frac{1+\sigma_{i}}{p_{i}+\sigma_{i}}\right)
$$

assume

$$
\begin{aligned}
& I_{s p, i}=I_{s p} \\
& \sigma_{i}=s
\end{aligned}
$$

so

$$
\Delta V_{t o t}=\sum I_{s p} g_{0} \ln \left(\frac{1+s}{p_{i}+s}\right)
$$

(after [Fortescue, Stark \& Swinerd, 2003])

Ideal multi-stage rocket (cnt'd)

by definition :

$$
P_{\text {tot }}=p_{1} \times p_{2} \times p_{3} \times \ldots . \times p_{N}=\Pi p_{i}
$$

optimal solution (w.o.derivation) :

$$
p_{i}=\sqrt[N]{P_{t o t}}
$$

SO

$$
\Delta V_{\text {tot }}=I_{s p} g_{0} N\left\{\ln (1+s)-\ln \left(s+\sqrt[N]{P_{t o t}}\right)\right\}
$$

(after [Fortescue, Stark \& Swinerd, 2003])

Ideal multi-stage rocket (cnt'd)

- 4 stages: $\Delta \mathrm{V} /\left(\mathrm{I}_{\mathrm{sp}} \mathrm{g}_{0}\right) 2.0-5.5$ (factor 2.8)
- staging very attractive (for modest P)
- high P: gain multi-staging limited $(\rightarrow 2$ stages for Ariane-

Ideal multi-stage rocket (cnt'd)

Question 1

The performance of a rocket (i.e., the $\Delta \mathrm{V}$ that can be obtained) is determined by the ratio $M_{\text {begin }} / M_{\text {end }}$, amongst others. New parameters " p " and " σ " can be defined:
$p=M_{\text {payload }} / M_{\text {begin }}$ and $\sigma=M_{\text {constr }} / M_{\text {prop }}$.

Derive the following equation:
$M_{\text {begin }} / M_{\text {end }}=(1+\sigma) /(p+\sigma)$

Ideal multi-stage rocket (cnt'd)

Question 2

The performance of a rocket (i.e., the ΔV that can be obtained) is determined by the ratio $M_{\text {begin }} / M_{\text {end }}$, amongst others. New parameters " p_{i} " and " σ_{i} " can be defined for each possible stage "i": $p_{i}=M_{\text {payload, } i} / M_{\text {begin,i }}$ and $\sigma_{i}=M_{\text {constr, } i} / M_{\text {prop, },}$.

Derive the following equation which holds for an arbitrary number of stages N (where it is assumed that the parameters σ_{i} are equal to " s " for all stages, and the payload fractions of all stages p_{i} are equal to $(N) \sqrt{ } P_{\text {tot }}$ (i.e., the $N^{\text {th }}$ root of $P_{\text {tot }}$):

$$
\Delta V_{t o t}=I_{s p} g_{0} N\left\{\ln (1+s)-\ln \left(s+\sqrt[N]{P_{t o t}}\right)\right\}
$$

Ideal multi-stage rocket (cnt'd)

Question 3
Given the equation

$$
\Delta V_{t o t}=I_{s p} g_{0} N\left\{\ln (1+s)-\ln \left(s+\sqrt[N]{P_{t o t}}\right)\right\}
$$

1. What do the various parameters represent?
2. What does the equation express?
3. Make a sketch of the behaviour of $\Delta V_{\text {tot }} /\left(I_{\text {sp }} g_{0}\right)$ as a function of parameter N , for the case $\mathrm{P}_{\text {tot }}=0.001$ and the case $\mathrm{P}_{\text {tot }}=$ 0.010 (parameter " s " is equal to 10%). Clearly indicate the (range of) numerical values for $\Delta \mathrm{V}_{\text {tot }} /\left(\mathrm{I}_{\mathrm{sp}} \mathrm{g}_{0}\right)$.
4. Discuss the consequences of increasing N for both cases of $P_{\text {tot }}$.

Real single-stage launcher

In direction of flight: $\mathrm{MdV} / \mathrm{dt}=\mathrm{F} \cos (\alpha+\delta)-\mathrm{Mg} \sin (\gamma)-\mathrm{D}$

Real single-stage launcher

In direction of flight: $\quad \mathrm{MdV} / \mathrm{dt}=\mathrm{F} \cos (\alpha+\delta)-\mathrm{Mg} \sin (\gamma)-\mathrm{D}$

1. Thrust misalignment: $\alpha+\delta \neq 0^{\circ}$ (α needed to counteract gravity, δ for steering \rightarrow cannot be avoided)
2. Gravity loss: $\gamma \neq 0^{\circ}$ (launcher lifts off in vertical direction \rightarrow unavoidable)
3. Drag loss: $\mathrm{D} \neq 0$ (first part of trajectory through atmosphere \rightarrow unavoidable)

Real single-stage launcher (cnt'd)

vertical flight :

$$
d V=-w \frac{d M}{M}-g d t-\frac{D}{M} d t
$$

integration :

$$
\begin{aligned}
V_{\text {end }} & =-\int w \frac{d M}{M}-\int g d t-\int \frac{D}{M} d t= \\
& =V_{\text {end,ideal }}-\Delta V_{g}-\Delta V_{d}
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{\text {end,ideal }}=I_{s p} g_{0} \ln (\Lambda) \\
& \Delta V_{g}=g_{0} t_{b}
\end{aligned}
$$

Real single-stage launcher (cnt'd)

velocity at burnout:

$$
V_{\text {burnout }}=I_{s p} g_{0}\left[\ln (\Lambda)-\frac{1}{\Psi_{0}}\left(1-\frac{1}{\Lambda}\right)\right]
$$

- including gravity losses
- w/o drag losses
altitude at burnout:

$$
h_{\text {burnout }}=\frac{I_{s p}^{2} g_{0}}{\Psi_{0}}\left[\left(1-\frac{\ln (\Lambda)+1}{\Lambda}\right)-\frac{1}{2 \Psi_{0}}\left(1-\frac{1}{\Lambda}\right)^{2}\right]
$$

altitude at culmination :

$$
h_{\text {culm }}=\frac{I_{s p}^{2} g_{0}}{\Psi_{0}}\left(\frac{1}{2} \Psi_{0} \ln ^{2}(\Lambda)-\ln (\Lambda)-\frac{1}{\Lambda}+1\right)
$$

time until culmination :

$$
t_{\text {culm }}=I_{s p} \ln (\Lambda)
$$

Real single-stage launcher (cnt'd)

Data:

- specific impulse $\mathrm{I}_{\mathrm{sp}}=300 \mathrm{~s}$
- $\Psi_{0}=1.5$
- $\wedge=5$

Results:

	w/o gravity	with gravity
burn time [s]	160.0	
burnout velocity [m/s]	4736.6	3167.0
burnout height [km]	281.4	155.8
culmination time [s]	-	482.8
culmination height [km]	-	667.0
Culmination height for impulsive shot $[\mathrm{km}]$	-	1143.5

Real single-stage launcher (cnt'd)

Culmination altitudes of single-stage launchers, for $\mathrm{I}_{\mathrm{sp}}=200 \mathrm{~s}$ (left) and 400 s (right). Maximum acceleration $=10 \mathrm{~g}$.

Real single-stage launcher (cnt'd)

-VELOCITY,V

LOCAL HORIZONTAL

Gravity loss: minimize by shifting to horizontal flight a.s.a.p.
Drag loss: minimize by reducing trajectory through atmosphere

CONFLICT !!

Solution 1: start in vertical directory, then turn to (more) horizontal direction.
$\sqrt{9}$ Solution 2: use air-launched vehicle.

Example: Pegasus

Requirements [OSC, 2003]:

- maximum payload 455 kg into LEO
- cost-effective
- reliable
- flexible
- minimum ground support
- multiple payload capability
- short lead time
- (released at 12 km altitude)

AE2104 Flight [OSC, 2010]

Example: Pegasus (cnt'd)

Pegasus XL mission profile [OSC, 2007]

Overall performance

[OSC, 2000]

Can we (easily) reproduce these numbers?

Overall performance (cnt'd)

Specific energy (i.e., energy per unit of mass):

$$
E_{\text {orbit }}=E_{\text {pot,begin }}+E_{\text {kin,eff }}-\Delta E_{\text {pot }}
$$

- $\mathrm{E}_{\text {orbit }}=$ total energy in orbit (sum of kinetic+potential)
- $\mathrm{E}_{\text {pot,begin }}=$ potential energy at launch
- $E_{\text {kin,eff }}=$ effective kinetic energy
- $\Delta \mathrm{E}_{\mathrm{pot}}=$ gain in potential energy

Overall performance (cnt'd)

Substitution:

$$
-\frac{\mu}{2 a}=-\frac{\mu}{\mathrm{R}_{\mathrm{e}}+h_{\text {lanench }}}+\frac{1}{2}\left(V_{0}+\Delta V_{1}+\Delta V_{2}+\Delta V_{3}-\Delta V_{d+g}\right)^{2}-\left(-\frac{\mu}{a}+\frac{\mu}{\mathrm{R}_{\mathrm{e}}+h_{\text {lanech }}}\right)
$$

- $\mu=$ gravitational parameter Earth
- $a=$ semi-major axis of orbit
- $\mathrm{h}_{\text {launch }}=$ altitude of launch platform
- $\mathrm{V}_{0}=$ velocity of launch platform
- $\Delta \mathrm{V}_{1,2,3}=$ velocity increment delivered by stage $1,2,3$

TUDelft $\cdot \Delta \mathrm{V}_{\mathrm{d}+\mathrm{g}}$ velocity loss due to atmosphere and gravity

Overall performance (cnt'd)

$\rightarrow \mathrm{a}=\mathrm{f}\left(\mathrm{i}, \delta_{\text {launch }} \mathrm{h}_{\text {launch }}\right.$ payload mass)
TUDelt
AL $\angle \perp U 4$ rignt ana urditaı Iviecnanıcs

Overall performance (cnt'd)

[Wertz\&Larson, 1991]:

- Drag+gravity losses $1.5-2.0 \mathrm{~km} / \mathrm{s}$
- Drag loss: $0.3 \mathrm{~km} / \mathrm{s}$

Pegasus: small launcher \rightarrow

- Drag+gravity losses $1.5 \mathrm{~km} / \mathrm{s}$
- Drag loss $0.3 \mathrm{~km} / \mathrm{s}$
- Gravity loss $1.5-0.3=1.2 \mathrm{~km} / \mathrm{s}$

Overall performance (cnt'd)

Results for launches due East from KSC $\left(\delta=28.5^{\circ}\right)$ and WTR $\left(\delta=34.6^{\circ}\right)$: Pegasus payload performance

Overall performance (cnt'd)

Orbit altitude as a function of carrier velocity ($\mathrm{M}_{\text {payload }}=300 \mathrm{~kg}$, launch at equator):

Pegasus capability for $\mathbf{3 0 0} \mathbf{~ k g}$ payload
\rightarrow i=Odeg - $-\mathrm{i}=98 \mathrm{deg}$

Design

Can we (easily) reproduce the overall layout of a launcher?

Example: Pegasus

Design (cnt'd)

Some data and assumptions:

- 3 stages
- I_{sp} identical for all stages (290 s)
- $\mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }}$ identical for all stages (0.08)
- $\mathrm{V}_{\mathrm{c}}=7.784 \mathrm{~km} / \mathrm{s}$ at $\mathrm{h}=200 \mathrm{~km}$
- $\mathrm{V}_{\text {earth }}=0.464 \mathrm{~km} / \mathrm{s}$ at equator
- $\mathrm{V}_{\text {carrier }}=0.222 \mathrm{~km} / \mathrm{s}$ w.r.t. Earth
- $\rightarrow \mathrm{V}_{\text {pegasus, initial }}=0.686 \mathrm{~km} / \mathrm{s}$

Design (cnt'd)

- Drag loss $0.3 \mathrm{~km} / \mathrm{s}$
- Gravity loss 1.2 km/s
$1^{\text {st }}$ order approach:
- $\Delta \mathrm{V}_{\text {ideal }}$ equally distributed over 3 stages
- Drag loss on account of $1^{\text {st }}$ stage
- Gravity loss equally distributed over 3 stages
\rightarrow
- Stage $1: \Delta V=2.366+0.3+0.4=3.066 \mathrm{~km} / \mathrm{s}$
f. Stage 2 and 3: $\Delta \mathrm{V}=2.366+0.4=2.766 \mathrm{~km} / \mathrm{s}$ (each)

Design (cnt'd)

Tsiolkovsky's rocket equation:

$$
\begin{aligned}
& \Delta V=g_{0} I_{s p} \ln \left(\frac{M_{\text {total }}}{M_{\text {total }}-M_{\text {prop }}}\right) \\
& \Delta V=g_{0} I_{s p} \ln \left(\frac{M_{\text {total }}}{M_{\text {constr }}+M_{\text {payload }}}\right) \\
& \frac{M_{\text {constr }}}{M_{\text {total }}}+\frac{M_{\text {payload }}}{M_{\text {total }}}=\exp \left(\frac{-\Delta V}{I_{s p} g_{0}}\right)
\end{aligned}
$$

Design (cnt'd)

Stage 3:
$\mathrm{M}_{\text {payload }}=455 \mathrm{~kg}, \mathrm{I}_{\mathrm{sp}}=290 \mathrm{~s}, \mathrm{M}_{\text {constr }} / \mathrm{M}_{\text {total }} \sim 0.08$:

SO:

- $\mathrm{M}_{\text {total }}=1526 \mathrm{~kg}$
- $\mathrm{M}_{\text {constr }}=122 \mathrm{~kg}$
- $\mathrm{M}_{\text {payload }}=455 \mathrm{~kg}$
- $\mathrm{M}_{\text {prop }}=949 \mathrm{~kg}$

Next: total mass of stage 3 is equal to payload mass of stage 2 .

Design (cnt'd)

	stage 3			stage 2			stage 1		
	re-eng $[\mathrm{kg}]$	real $[\mathrm{kg}]$	Δ $[\%]$	re-eng $[\mathrm{kg}]$	real $[\mathrm{kg}]$	Δ $[\%]$	re-eng $[\mathrm{kg}]$	real $[\mathrm{kg}]$	Δ $[\%]$
payload	455	455	0.0	1526	1351	12.9	5116	5692	-10.1
constr.	122	126	-3.1	409	416	-1.6	1572	1369	14.8
prop.	949	770	23.2	3181	3925	-19.0	12961	15014	-13.7
total	1526	1351	12.9	5116	5692	-10.1	19649	22075	-11.0

Further reading

- Koelle, D.E., Cost Analysis of Present Expendable Launch Vehicles as contribution to Low Cost Access to Space Study. In: (2nd ed.), Technical Note TCS-TN-147 (96), TransCostSystems, Ottobrun, Germany (December 1966).
- Parkinson, R.C., Total System Costing of Risk in a Launch Vehicle. In: 44th International Astronautical Congress (2nd ed.), AA-6.1-93-735 (16-22 Oct., 1993) Graz, Austria .
- Isakowitz, S.J.. In: (2nd ed.), International Reference Guide to Space Launch Systems, American Institute for Aeronautics and Astronautics, Washington DC (1991).
- "ESA Launch Vehicle Catalogue", European Space Agency, Paris, Revision 8: December 1997.
- http://www.orbital.com info on Pegasus, Taurus and Minotaur
- users.commkey.net/Braeunig/space/specs/pegasus.htm
- http://arianespace.com/english/leader launches/html
- http://www.boeing.com/defence-space/space/delta/record.htm)

