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Flight and Orbital Mechanics

Lecture slides



Material for exam: this presentation (i.e., no material from text book).

Sun-synchronous orbit: used for a variety of earth-observing missions.



Introduction picture.



In essence, this is about understanding an important component in the space 
environment, and dealing with the consequences (in a positive way!).



This topic relies to a certain extent on the theory of Kepler orbits as lectured in 
ae1-102.

The material covered in this powerpoint presentation needs to be studied for the 
exam; more (background) information on all topics can be found in “Spacecraft 
Systems Engineering” by Fortescue, Stark and Swinerd.



Some examples of relevant questions that you should be able to answer after 
having mastered the topics of these lectures.



The values mentioned in this table hold for the GOCE satellite (altitude 250 km), 
and are meant for illustration purposes only; actual acceleration values depend on 
specific circumstances (position, level of solar activity, ….). More on 
perturbations in one of the next lecture hours.



Selecting a proper reference system and a set of parameters that describe a 
position in 3 dimensions is crucial to quantify most of the phenomena treated in 
this chapter, and to determine what a satellite mission will experience. Option 1: 
cartesian coordinates, with components x, y and z. Option 2: spherical 
coordinates, with components r (radius, measured w.r.t. the center-of-mass of the 
central object; not to be confused with the altitude over its surface), δ (latitude) 
and λ (longitude).



”Pericenter” is the general expression for the position at closest distance to the 
focal center; when the object orbits the Earth, one generally speaks of the 
“perigee”, and when it orbits the Sun, it is named ”perihelion”. Similar 
expressions for the point at farthest distance “apocenter” -> “apogee”, 
“apohelion”.



The time of passage of a well-defined point in the orbit (e.g., the pericenter) is 
indicated by “tp” or, equivalently, “τ” (“tau”). Knowing this value, one can relate 
the position in the orbit to absolute time (cf. following sheets).

The inclination “i” is the angle between the orbital plane and a reference plane, 
such as the equatorial plane. It is measured at the ascending node, i.e., the 
location where the satellite transits from the Southern Hemisphere to the 
Northern Hemisphere, so by definition its value is between 0° and 180°. The 
parameters Ω and ω can take any value between 0° and 360°.
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Parameter “G” is the universal gravitational constant (6.67259×10-11 m3/kgs2), 
“msat” represents the mass of the satellite, “∆r” is the distance between a mass 
element of the Earth and the satellite  (written in bold it is the vector, directed 
from the mass element to the satellite), “r” is the distance between the satellite 
and the center-of-mass of the Earth (equal to rsat in the picture – apologies for 
difference in notation), “ρ” is the mass density of an element “dv” of the Earth 
[kg/m3], “V” is the total volume of the Earth, “M” is the total mass of the Earth 
(5.9737×1024 kg), “U” is the gravity potential (last equation: for a symmetric 
Earth), and “µ” is the gravitational parameter of the Earth 
(=G×Mearth=398600.44×109 m3/s2).

The last equation shows how to compute the radial acceleration. Similar 
expressions can be used to derive the acceleration in x, y and z direction (that is: 
by taking the partial derivatives w.r.t. these parameters, and adding a minus sign).



The Earth is irregular in shape and mass distribution; this picture illustrates the 
geoid, i.e. an equipotential surface w.r.t. a 3D ellipsoid; offsets are about 80 m in 
either direction.
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The first equation gives the classical description of the gravity field potential, 
with respectively the main term, the zonal terms (independent of longitude) and 
the sectorial and tesseral terms (cf. next sheet). Parameter “Re” is the Earth’s 
equatorial radius (6378×103 m); the satellite position is described in an Earth-
fixed (as in: co-rotating) reference frame by the radius “r” (w.r.t. the center of 
Earth), the latitude ”δ” (w.r.t. the equator) and the longitude “λ” (w.r.t. an Earth-
fixed reference meridian: the 0° meridian crossing Greenwich). The parameters 
“Jn”, ”Jn,m” and “λn,m” are scaling and orientation coefficients of the gravity field 
model, respectively. J2 is about 1082×10-6, whereas the other J values are O(10-6).

When developing a specific term of the gravity field potential, it is strongly 
recommended to develop the Legendre function or potential as function of the 
general argument “x” first, and substitute the actual argument “sinδ” at the very 
end.

The (infinite long) series expansion, with different ”frequencies” as determined 
by the Legendre polynomial/function, is best compared to a Fourier series to 
describe an arbitrary signal.
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See previous sheet for role of degree ”n”, order ”m” and coefficient ”Jn,m”. EGM 
is the abbreviation of Earth Gravity Model.



J2 is about 1082×10-6, whereas the other J values are O(10-6). It is related to the 
equatorial bulge, the ring of extra material around the equator of the Earth. U2 is 
the contribution of the flattening of the Earth to the total potential U (so, directly 
related to the value of J2). It can also be written as U2,0.



J2 is about 1082×10-6, whereas the other J values are O(10-6). U2 can also be 
written as U2,0.

First develop P2 as a function of the general argument “x”, and then substitute 
this with the actual argument “sinδ”.

In these equations, parameter “x” does NOT represent the x-position of our 
spacecraft, but it is a general argument (as in “y=f(x)”).



J2 is about 1082×10-6, whereas the other J values are O(10-6). U2 can also be 
written as U2,0. It can be interpreted as potential energy (per unit mass). In this 
illustration, it is evaluated at 1000 km altitude. Clearly, U2 is independent of 
longitude and symmetric in latitude (see equation).



Straightforward treatment of gravity field components. Parameters r, δ and λ
represent radius (w.r.t. center of Earth), geocentric latitude (w.r.t. equatorial 
plane) and longitude (w.r.t. Earth-fixed reference), respectively.

Accelerations are derived by taking the derivative w.r.t. a parameter that 
expresses length in the required direction. Since an infinitesimal distance in NS 
direction is equal to rdφ (angle φ in radians, measured along the great circle), the 
expression for the acceleration in NS direction contains a scaling factor 1/r. In a 
similar fashion, an infinitesimal distance in EW direction, at a certain latitude δ, 
is equal to r cos(δ)dφ (the total length of a latitude circle is equal to 2πrcos(δ)). 
Therefore, the expression for EW acceleration contains a scaling factor 1/(r 
cos(δ)).

When deriving expressions for the accelerations due to a particular term, always 
develop the Legendre functions Pn,m and Pn as a function of the general parameter 
“x” first, and not until the very end substitute “x” with the real argument “sin δ”.



Application of recipe on previous sheet. Again, for altitude of 1000 km. Radial 
acceleration due to J2 is independent of longitude, and symmetric in latitude.



Idem. The NS acceleration due to J2 is also independent of longitude, and anti-
symmetric in latitude. Note: the direction “North-South” is generally different 
from the z-direction, since the former follows the curvature of the surface of the 
Earth, whereas the latter is always pointed along the rotation axis of the Earth.



Idem. The EW acceleration due to J2 is zero, since U is independent of longitude 
(it is symmetric around the z-axis, cf. illustration on sheet 14).



This is the most complicated derivation that you can encounter in this course ae2-
104 (or what you can expect during an exam….).

When doing such a derivation in an exam, the full derivation should be given 
(and not with the ”…..” text as shown here, for the sake of brevity).

First develop P3 and P3,2 as function of the general argument “x”, and then 
substitute this by the actual argument “sinδ”.



This is the most complicated derivation that you can encounter in this course ae2-
104 (or what you can expect during an exam….).

When doing such a derivation in an exam, the full derivation should be given 
(and not with the ”…..” text as shown here, for the sake of brevity).



The collection of these (and other) terms can be regarded as corrections to the 1st

order model of a spherical, radially symmetric Earth. The equatorial bulge is 
represented by the J2 (or J2,0, as depicted in this plot) term, which is the dominant 
correction term in the Earth’s gravity field model. The real gravity field can be 
approximated by an (in principle infinite) series of individual terms, with 
different characteristics (cf. a Fourier analysis).



Changes in parameters after one complete revolution of the satellite around the 
central body (Earth). So, no secular J2-effect on semi-major axis, eccentricity nor 
inclination.



The net force acting on the satellite when traveling over the Southern hemisphere 
causes the trajectory to be bent in northern direction (i.e., the inclination of the 
orbit increases). When over the Northern hemisphere, the same thing happens but 
with reverse sign � the net effect on the inclination is zero, but the orientation of 
the orbit has shifted in a western direction (for inclinations smaller than 90º, as 
sketched here).



ANSWERS (TRY YOURSELF FIRST!!):

1. ar = -∂U/∂r

2. ar = 3 µ J2 Re
2 r-4 (-0.5 + 1.5 sin2δ)

3. ar = 0.0235 (-0.5 + 1.5 sin2δ)   [m/s2]

4. Give sketch. Note: sketch is symmetric w.r.t. δ=0°.



ANSWERS (TRY YOURSELF FIRST!!):

1. aNS = -1/r ×∂U/∂δ

2. aNS = -3 µ J2 Re
2 r-4 sinδ cosδ

3. aNS = -0.0235 sinδ cosδ [m/s2]

4. Give sketch. Note: sketch is anti-symmetric w.r.t. δ=0°.



ANSWERS (TRY YOURSELF FIRST!!):

1. ar = -∂U/∂r

2. ar = 4 µ J3 Re
3 r-5 (2.5 sin3δ – 1.5 sinδ)

3. ar = -6.80×10-5 (2.5 sin2δ – 1.5 sinδ)   [m/s2]

4. Give sketch. Note: sketch is anti-symmetric w.r.t. δ=0°.



ANSWERS (TRY YOURSELF FIRST!!):

1. aNS = -1/r ×∂U/∂δ

2. aNS = -µ J3 Re
3 r-5 (7.5 sin2δ cosδ - 1.5 cosδ)

3. aNS = 1.70×10-5 (7.5 sin2δ cosδ - 1.5 cosδ) [m/s2]

4. Make sketch. Note: sketch is symmetric w.r.t. δ=0°.



The ground track of a satellite is the succession of sub-satellite points (i.e., the 
projection of the satellite position on the surface of the Earth; altitude drops out).

Raw sea-level observations need to be corrected for many phenomena, such as 
local tides, effects of local sea-floor geometry, etcetera. When evaluated at a 
single, well-defined spot, systematic errors in such corrections will drop out 
(whereas they can introduce errors when comparing observations at e.g. 30 km 
distance).



Overview of satellites equipped with altimeter instruments. Note the “families” 
Seasat - Geosat - GFO, ERS-1 – ERS-2 – ENVISAT, and TOPEX/Poseidon –
Jason-1 – Jason-2. Satellites in red are US, satellites in green are European. GFO 
is the abbreviation for Geosat Follow-On. Examples of other satellites in Earth-
repeat orbits (but not necessarily equipped with an altimeter instrument): SMOS, 
Cartosat, Sentinel-3.



“L” is longitude: measured in co-rotating Earth-fixed reference frame, positive in 
Eastward direction.

Verify direction of shift in plot and definition of signs in equations.

Eccentricity ~0 holds for 95% of actual spacecraft.

T is the orbital period of the satellite [s]. TE is the rotational period of the Earth 
(sidereal day, [s]).

Effect ∆L2: cf. expressions on sheet 24.





The value for “k” follows from the top-level requirements. The value for “j” is a 
reasonable guess, knowing that the real satellite is expected to fly at a a certain 
altitude. What are the options for (a,e,i)?



3 examples for (j,k) = (14,1). Here we follow the approach of assuming a value 
for the semi-major axis, and solving for inclination. Can we identify possible 
combinations (a,i) (eccentricity e is assumed to be 0) that satisfy the 
requirements?



Examples for zero-eccentricity orbits, with a 1-day repeat cycle. A higher altitude 
corresponds with a longer orbital period, which means less revolutions per day. 
Circular orbits: altitude is semi-major axis minus Earth radius (6378.137 km). 
The black stars indicate the two possible solutions  as derived on the previous 
sheet.



Examples for zero-eccentricity orbits, with a 3-day repeat cycle. A higher altitude 
corresponds with a longer orbital period, which means less revolutions per day. 
Circular orbits: altitude is semi-major axis minus Earth radius (6378.137 km). 
Clearly, going from a 1-day repeat period to a 3-day repeat period increases the 
range of options. Compare some lines with the plot on the previous sheet: 45 
revolutions in 3 days is exactly identical to 15 revolutions in 1 day….



ERS-1 is the abbreviation for European Remote-Sensing satellite. ESA was 
extremely proud of this one, it’s a classical one!



In standard configuration, the repeat period is 35 days. The repeat interval is 
typically traded against geometric resolution (i.e., the distance between 
neighboring ground tracks).



Zooming in on plot on previous sheet. 1st–order estimate misses real value by 
about 2 km…..





42



Zooming in on plot on previous sheet. 1st–order estimate also misses real value 
by about 2 km… Agreement w.r.t. reality is comparable with that of ERS-1 (same 
orbit altitude � more or less the same additional disturbances of perturbations, 
drag, …).



ANSWERS (TRY YOURSELF FIRST!!):

a) i = 24.0°

b) i = 119.5°

c) T = 6207 s = 103.45 min.

d) Question a): Trepeat= 4241.6 min = 70.69 hr = 2.9455 days. Question b): 
Trepeat= 4345.0 min = 72.417 hr = 3.017 days. Earth’s flattening has opposite 
effects on orbits with inclination < 90° (J2 precession acts in Westward 
direction) and orbits with inclination > 90° (J2 precession acts in Eastward 
direction).



Having a satellite in a Sun-synchronous orbit does NOT mean that it is in 
constant sunlight throughout its mission!



Inertially stable orbit: no perturbations, so no changes in orientation. Sun-
synchronous orbit: effect is fully due to J2.



Overview of satellites orbiting Earth in Sun-synchronous orbits. Note the 
“families” Seasat - Geosat - GFO, ERS-1 – ERS-2 – ENVISAT, and 
TOPEX/Poseidon – Jason-1 – Jason-2. Satellites in red are US, satellites in green 
are European. GFO is the abbreviation for Geosat Follow-On.



Direct, 1-on-1 relation between semi-major axis and inclination.

T is the orbital period of the satellite [s]; TE is the length of a sidereal day [s]; TES

is the orbital period of the Earth around the Sun [s].

Again, compare with equations on sheet 24.

Note: inclination is always larger than 90°.



ERS-1 is the abbreviation for European Remote-Sensing satellite.



No significant difference.



ANSWERS (TRY YOURSELF FIRST):

a) The orientation of the orbital plane w.r.t. the direction towards the Sun is 
constant over time.

b) a3.5 = -(3/4π) J2 Re
2 sqrt(µ) TES cos(i)

c) a = ( -2.0936 × 1014 cos(i) )-3.5 [km] � make table with some numbers �

sketch



Direct, 1-on-1 relation between semi-major axis and (j,k) combination; 
inclination follows directly from solution for semi-major axis.

T is orbital period of satellite [s]; TE is the length of a sidereal day [s]; TES is the 
orbital period of the Earth around the Sun [s].

Again, compare with equations on sheet 24.



Direct, 1-on-1 relation between semi-major axis and (j,k) combination; 
inclination follows directly from solution for semi-major axis.



Direct, 1-on-1 relation between semi-major axis and (j,k) combination; 
inclination follows directly from solution for semi-major axis.



ANSWERS (TRY YOURSELF FIRST):

a) See 3rd-previous sheet.

b) a = 7158.748 km.

c) i = 98.53°





Straightforward application of recipe.



The J2 contribution is important for the exact determination of the altitude for 
which the orbital period is equal to the length of a sidereal day (compared to an 
unperturbed Kepler orbit, the difference is about 500 m……): the value of the 
semi-major axis “a” has to be chosen such that there is equilibrium between the 
centripetal acceleration ω2r and the physical accelerations “g” (due to the central 
gravity field of Earth) and “ar,J2” (the radial acceleration due to J2). J2,2 is 
important for station keeping (see next sheets).



J2,2-effect is in many cases ignored for LEO satellites, but is elementary for GEO 
spacecraft (note opposite direction of acceleration and effect; why?). What 
defines equilibrium points? What defines stability/instability of equilibrium 
points? Can we ignore J2 ? Here, the effect of J2,2 in along-track direction is 
evaluated only; it of course has a full, 3-dimensional effect (r,δ,λ or x,y,z).



ANSWERS (TRY YOURSELF FIRST!!):

1. aEW = -1/(r cosδ) × ∂U/∂λ

2. aEW = -6 µ J2,2 Re
2 r-4 cos δ sin (2(λ-λ2,2 ))

3. rGEO = 42164.14 km

4. aEW = -5.6 × 10-8 sin (2(λ+14.9))   [m/s2]

5. Located at -14.9°, 75.1°, 165.1° and 255.1°. (East longitude)

6. Stable: 75.1° and 255.1°; unstable: -14.9° and 165.1°.


