Flight and Orbital Mechanics

Lecture slides

Flight and Orbital Mechanics AE2-104, lecture hours 17+18: Perturbations Ron Noomen

October 25, 2012

Example: solar sail spacecraft

Questions:

- what is the purpose of this mission?
- where is the satellite located?
- why does it use a solar sail?

•

[Wikipedia, 2010]

Overview

Orbital mechanics (recap)

- Irregularities gravity field
- Third-body perturbations
- Atmospheric drag
- Solar radiation pressure
- Thrust
- Relativistic effects
- Tidal forces
- Thermal forces

← Special missions only; not treated here

• Impacts debris/migrometeoroids

Learning goals

The student should be able to:

- mention and describe the various perturbing forces that may act on an arbitrary spacecraft;
- quantify the resulting accelerations;
- make an assessment of the importance of the different perturbing forces, depending on the specifics of the mission (phase) at hand.

Lecture material:

these slides (incl. footnotes)

2-dimensional Kepler orbits

2-dimensional Kepler orbits

- a: semi-major axis [m]
- e: eccentricity [-]

TUDelft

- θ : true anomaly [deg]
- E: eccentric anomaly [deg]

[Cornellise, Schöyer and Wakker, 1979]

2-dimensional Kepler orbits: general equations

$$r = \frac{a (1 - e^2)}{1 + e \cos \theta} = \frac{p}{1 + e \cos \theta} ; r_p = a (1 - e) ; r_a = a (1 + e)$$

$$E_{tot} = E_{kin} + E_{pot} = \frac{V^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$$

$$V^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right) ; \quad V_{circ} = \sqrt{\frac{\mu}{r}} = \sqrt{\frac{\mu}{a}} ; \quad V_{esc} = \sqrt{\frac{2\mu}{r}}$$

$$T = 2 \pi \sqrt{\frac{a^3}{\mu}}$$

TUDelft

AE2104 Flight and Orbital Mechanics

7 |

ellips: $0 \le e < 1$ a > 0

$$E_{tot} < 0$$

$$n = \sqrt{\frac{\mu}{a^3}}$$

$$\tan \frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}$$

$$M = E - e \sin E$$

$$M = n(t - t_0)$$

$$E_{i+1} = E_i + \frac{M - E_i + e \sin E_i}{1 - e \cos E_i}$$

$$r = a(1 - e \cos E)$$

Kepler's Equation

satellite	altitude [km]	specific energy [km²/s²/kg]
launch platform	0	-62.4
SpaceShipOne	100+ (culmination)	-61.4
imaginary sat	100	-30.8
Envisat	800	-27.8
LAGEOS	5900	-16.2
GEO	35900	-4.7

AE2104 Flight and Orbital Mechanics 9

parabola:
$$e = 1$$
 $a = \infty$ $E_{tot} = 0$

$$r = \frac{p}{1 + \cos \theta}$$

$$M = \frac{1}{2} \tan \frac{\theta}{2} + \frac{1}{6} \tan^3 \frac{\theta}{2}$$
$$M = n (t - t_0)$$
$$n = \sqrt{\frac{\mu}{p^3}}$$
$$V^2 = V_{esc}^2 = \frac{2\mu}{r}$$

hyperbola: e > 1 a < 0 $E_{tot} > 0$

$$\tan\frac{\theta}{2} = \sqrt{\frac{e+1}{e-1}} \tanh\frac{F}{2}$$

$$M = e \sinh F - F$$

$$M = n (t - t_0)$$

$$n = \sqrt{\frac{\mu}{(-a)^3}}$$

 $r = a (1 - e \cosh F)$

$$V^2 = V_{esc}^2 + V_{\infty}^2 = \frac{2\mu}{r} + V_{\infty}^2$$

ω: argument of pericenter [deg]

TUDelft

 $u = \omega + \theta$: argument of latitude [deg]

coordinates transformations

1) from spherical (r,λ,δ) (λ in X-Y plane; δ w.r.t. X-Y plane) to cartesian (x,y,z):

 $x = r \cos \delta \cos \lambda$ $y = r \cos \delta \sin \lambda$ $z = r \sin \delta$

TUDelft

2) from cartesian (x,y,z) to spherical (r, λ , δ):

$$r = sqrt (x^{2} + y^{2} + z^{2})$$

$$r_{xy} = sqrt (x^{2} + y^{2})$$

$$\lambda = atan2 (y / r_{xy}, x / r_{xy})$$

$$\delta = asin (z / r)$$

Orbital perturbations: introduction

Questions:

- what forces?
- magnitude of forces?

- how to model/compute in satellite orbit?
- analytically? numerically?
- accuracy?
- efficiency?

Inclusion in orbit modeling

Option 1: include directly in equation of motion

$$\frac{d \mathbf{x}^2}{d t^2} = \mathbf{a}_{main} + \mathbf{a}_{\Delta grav} + \mathbf{a}_{drag} + \mathbf{a}_{solrad} + \mathbf{a}_{3rdbody} + etcetera$$

Option 2: express as variation of orbital elements

e.g.
$$\frac{da}{dt} = \frac{2a^2}{\sqrt{\mu p}} \left[Se\sin\theta + N\frac{p}{r} \right]$$

(not further treated here; cf. ae4-874 and ae4-878)

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Irregularities gravity field

Already treated in lecture hours 15+16

$$acc = -3\mu J_2 R_e^2 r^{-4} \sin(\delta) \cos(\delta)$$

e.g., East-West acceleration due to $J_{2,2}$:

$$acc = -6\mu J_{2,2}R_e^2 r^{-4} 3\cos(\delta)\sin(2(\lambda - \lambda_{2,2}))$$

SIDE VIEW

TOP

VIEW

2,0

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Third-body perturbations

Attractional forces (by definition):

- satellite <-> Earth
- satellite <-> perturbing body
- Earth <-> perturbing body

Attractional forces (practice):

- Earth attracts satellite
- perturbing body attracts satellite
- perturbing body attracts Earth
- net effect counts

ŤUDelft

$$\longrightarrow \quad \ddot{\mathbf{r}}_{s} = -G \frac{M_{main}}{r_{s}^{3}} \mathbf{r}_{s} + G M_{p} \left(\frac{\mathbf{r}_{ps}}{r_{ps}^{3}} - \frac{\mathbf{r}_{p}}{r_{p}^{3}} \right)$$

 $M_{sat} << M_{E'} M_{S}$

2 situations:

- 1. heliocentric (*i.e.*, orbits around Sun)
- 2. planetocentric (*i.e.*, orbits around Earth)

Conclusions:

- influence increases with distance to Sun
- perturbation O(10⁻⁷) m/s²

chanics

25

Conclusions:

TUDelft

- influence Sun decreases with distance to Sun
- influence planets increases with distance to Sun
- acceleration from Sun O(10⁻²) m/s²; dominant (central body!!)
- near planet: 3rd body becomes dominant

Conclusions:

TUDelft

- in Solar System: Sun dominant
- near Earth: Earth itself dominant
- central body vs. 3rd body perturbation ??

chanics 26 |

Sphere of Influence:

 area around planet where gravity from planet is dominant (compared with gravity of other celestial bodies)

- 3-dimensional shape
- boundary
- 1st-order approximation: sphere with constant radius
- definition for determination location:

relative acceleration w.r.t. system 1 = relative acceleration w.r.t. system 2

 $\frac{acc_{Sun,3rd}}{acc_{Sun,3rd}} = \frac{acc_{Earth,3rd}}{acc_{Earth,3rd}}$ accEarth,main accSun,main

without derivation :

$$r_{SoI} = r_{3rd} \left(\frac{M_{main}}{M_{3rd}}\right)^{0.4}$$

example : Earth main body, Sun 3rd body :

$$rSoI,Earth = dist_Earth-Sun\left(\frac{M_Earth}{M_{Sun}}\right)^{0.4} \approx 930,000 \, km$$

28

Moon is at 384,000 km....

2 situations:

- 1. heliocentric (*i.e.*, orbits around Sun)
- 2. planetocentric (*i.e.*, orbits around Earth)

Conclusions:

- influence of Sun as 3rd body increases with distance from Earth
- effective 3rd body acceleration by Sun O(10⁻⁶) m/s²

AE2104 Flight and Orbital Mechanics

32 |

Rotating frame of reference Spacecraft Earth (referenced body) For the spacecraft For the spacecraft Sun (perturbing body)

Third-body perturbations (cnt'd)

Question 1:

a) Compute the dimension of the Sphere of Influence of the Earth (when the Sun is considered as the perturbing body). The SoI is given by the following general equation:

$$r_{SoI} = r_{3rd} \left(\frac{M_{main}}{M_{3rd}}\right)^{0.4}$$

- b) What is the value of the radial attraction exerted by the Earth at this distance? (if you were unable to make the question a, use a value of 1×10^6 km for this position).
- c) What is the effective gravitational acceleration by the Sun at this position? Assume that Earth, Sun and satellite are on a straight line.
- d) What is the relative perturbation of the solar attraction, compared to that of the main attraction of the Earth?

Data: 1 AU = 149.6 × 10⁶ km, m_{Sun} = 2.0 × 10³⁰ kg, m_{Earth} = 6.0 × 10²⁴ kg, μ_{Sun} = 1.3271 × 10¹¹ km³/s², μ_{Earth} = 398600 km³/s².

Answers: see footnotes below (BUT TRY YOURSELF FIRST!!)

Conclusions:

- influence of Moon as 3rd body increases with distance from Earth
- effective 3rd body acceleration by Moon O(10⁻⁵) m/s² at GEO

AE2104 Flight and Orbital Mechanics

Conclusions:

TUDelft

- Earth dominant (central body; within SoI)
- Moon most important 3rd body; Sun directly after
- effect of planets about 4 orders of magnitude smaller

[Wikimedia, 2010]

celestial body	⊿V-budget for GEO sat [m/s/yr]
Moon	36.93
Sun	14.45

Question 2:

- Consider a hypothetical planet X with mass 5×10^{25} kg, orbiting the Sun in a circular orbit with radius 3 AU. The orbital plane coincides with the ecliptic (*i.e.*, the orbital plane of the Earth).
- a) Make a sketch of the situation when the gravitational attraction of this planet X on satellites around the Earth is largest.
- b) Idem for the case when this would be smallest.
- c) Compute the maximum and minimum perturbing acceleration due to this planet X, on a geostationary satellite (radius orbit is 42200 km).

Data: G = 6.673 \times 10^{-11} m³/kg/s²; μ_{Earth} = 398600 km³/s²; 1 AU = 149.6 \times 10⁶ km

Answers: see footnotes below (BUT TRY YOURSELF FIRST !!)

Question 3:

- The treatment of the motion of a satellite is driven by the fact whether the vehicle is inside the Sphere of Influence (SoI) or not.
- a) Describe the concept of the SoI, and give its mathematical (underlying) definition.
- b) The dimension of the SoI can be approximated by the equation given below. Consider the Earth-Moon system: $\mu_{Earth} = 398600 \text{ km}^3/\text{s}^2$, $\mu_{Moon} = 4903 \text{ km}^3/\text{s}^2$, average distance Earth-Moon = 384,000 km. What is the radius of the SoI of the Moon?

$$r_{SoI} = r_{3rd} \left(\frac{M_{main}}{M_{3rd}} \right)^{0.4}$$

- c) Suppose that the Earth and Moon have equal masses. What would now be the radius of the SoI? What would it be from a physical point of view? Discuss the results.
- ANSWERS: see footnotes below. TRY YOURSELF FIRST!

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Atmosphere

$$\mathbf{a}_{\text{drag}} = -\frac{C_D S}{m} \frac{1}{2} \rho V^2 \frac{\mathbf{V}}{V} ;$$

$$\rho = \rho_0 \exp\left(-\Delta h / H\right)$$

40

AE2104 Flight and Orbital Mechanics

	Altitude [km]	Atmospheric density [kg/m ³]		
		minimum	maximum	
after	200	1.8×10^{-10}	3.5×10^{-10}	
[Wertz, 2009]:	300	8.2 × 10 ⁻¹²	4.0×10^{-11}	
	400	7.3 × 10 ⁻¹³	7.6 × 10 ⁻¹²	
	500	9.0 × 10 ⁻¹⁴	1.8×10^{-12}	
	600	1.7 × 10 ⁻¹⁴	4.9 × 10 ⁻¹³	
	700	5.7 × 10 ⁻¹⁵	1.5 × 10 ⁻¹³	
	800	3.0 × 10 ⁻¹⁵	4.4×10^{-14}	
	900	1.8×10^{-15}	1.9×10^{-14}	
	1000	1.2 × 10 ⁻¹⁵	8.8 × 10 ⁻¹⁵	
	1250	4.7 × 10 ⁻¹⁶	2.6 × 10 ⁻¹⁵	
T UDelft	1500	2.3 × 10 ⁻¹⁶	1.2×10^{-15}	

[Wertz, 2009]:

Satellite	Mass (kg)	Shape	Max. XA (m²)	Min. XA (m²)	Max. Drag Coef.	Min. Drag Coef.	Max. Ballistic Coef. (kg/m ²)	Min. Ballistic Coef. (kg/m ²)	Type of Mission
Oscar-1	5	box	0.075	0.0584	4	. 2	42.8	16.7	Comm.
Intercos16	550	cylind.	2.7	3.16	2.67	2.1	82.9	76.3	Scientific
Viking	277	octag.	2.25	0.833	4	2.6	128	30.8	Scientific
Explorer-11	37	octag.	0.18	0.07	2.83	2.6	203	72.6	Astronomy
Explorer-17	188.2	sphere	0.621	0.621	2	2	152	152	Scientific
Sp. Teles.	11,000	cylind.*	112	14.3	3.33	4	192	29.5	Astronomy
OSO-7	634	9-sided	1.05	0.5	3.67	2.9	437	165	Solar Physics
OSO-8	1,063	cylind.*	5.99	1.81	3.76	4	147	47.2	Solar Physics
Pegasus-3	10,500	cylind.*	264	14.5	3.3	4	181	12.1	Scientific
Landsat-1	891	cylind.*	10.4	1.81	3.4	4	123	25.2	Rem. Sens.
ERS-1	2,160	box*	45.1	4	4	4	135	12.0	Rem. Sens.
LDEF-1	9,695	12-face	39	14.3	2.67	4	169	93.1	Environment
HEAO-2	3,150	hexag.	13.9	4.52	2.83	4	174	80.1	Astronomy
Vanguard-2	9.39	sphere	0.2	0.2	2	2	23.5	23.5	Scientific
SkyLab	76,136	cylind.*	462	46.4	3.5	4	410	47.1	Scientific
Echo-1	75.3	sphere	731	731	2	2	0.515	0.515	Comm.
Extrema							437	0.515	

*With solar arrays

altitudes of Mir and GFZ-1:

[Wertz, 2009]:

circular orbits:

[Wertz, 2009]:

45

[ESA, 2010]

- launch date: March 17, 2009
- altitude: 250 km
- phase solar cycle?

TUDelft

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Solar radiation pressure

Delft

- amount of energy emitted by Sun at 1 AU distance: \approx 1371 W/m²
- value hardly dependent on solar activity → "Solar Constant" (SC)
- Solar radiation pressure [N/m²]: SC / c
- energy reduces with distance w.r.t. Sun: energy(r) = SC/r²

Solar radiation pressure (cnt'd)

Solar radiation pressure (cnt'd)

A CONTRACT OF A						
	satellite	a _{rad} [m/s²]]			
MAL 1	 ISS (100-1000 m²; 500 ton) 	9 – 90 × 10 ⁻¹⁰	MPAS AND MERES SCIENCE SCIENCE			
	ENVISAT	8.3 − 83 × 10 ⁻⁹ ←	BA2 Jamma Ba			
	LAGEOS	3 × 10 ⁻⁹	Series Malds			
	Echo-1	4.4 × 10 ⁻⁵	MASA IN			
	_ solar sail (100x100 m; 300 kg)	1.5 × 10 ⁻⁴				
			A HAT AND A			

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Thrust

Example 1:

acceleration of 0.190 mm/s² in along-track direction (*i.e.*, $a=0^{\circ}$)

Example 2:

acceleration of 0.190 mm/s² in radial direction (*i.e.*, $a=90^{\circ}$)

Example 3: orbit of SMART-1 [ESA, 2010]

High thrust:

- can compete against central gravity (*i.e.*, launch)
- instantaneous velocity changes (orbits around Earth + interplanetary orbits)

Low thrust:

Ť

- attractive since high I_{sp}
- primary propulsion for interplanetary missions
- station-keeping
- since 2012: transfer LEO \rightarrow GEO

Summary: Low Earth Orbit (1)

Summary: Low Earth Orbit (2)

Summary: Low Earth Orbit (3)

Conclusions near-Earth orbits:

- J_2 acceleration is dominant perturbation for all LEO
- low thrust already important
- atmospheric drag dominant perturbation at very low altitudes
- Solar, lunar and $J_{2,2}$ accelerations very small, but build up for GEO
- Kepler orbit very good 1st-order approximation (2-4 orders of magnitude Δ)

Summary: interplanetary orbit (1)

Summary: interplanetary orbit (2)

Conclusions interplanetary orbits:

- low thrust important
- Solar radiation can be important
- Kepler orbit very good 1st-order approximation (4-6 orders of magnitude Δ)

Summary perturbing forces

Question 4:

- a) Mention the 5 different categories of perturbing forces that may act on an arbitrary vehicle. Describe each category briefly (about 5 lines per item).
- b) Give a brief description of the (relative) importance of these categories.

Summary perturbing forces

Question 5:

- a) Mention the 5 different categories of perturbing forces that may act on an arbitrary vehicle.
- b) Compute the magnitude of the main gravitational force exerted by the Earth's gravity field.
- c) Compute the magnitude of the various perturbing sources.

Data:
$$\mu_{Earth} = 398600 \text{ km}^3/\text{s}^2$$
; $\mu_{Moon} = 4903 \text{ km}^3/\text{s}^2$; $\mu_{Sun} = 1.327 \times 10^{11} \text{ km}^3/\text{s}^2$; $R_e = 6378 \text{ km}$; $h_{GOCE} = 250 \text{ km}$; $\rho_{atm,avg} = 6.2 \times 10^{-11} \text{ kg/m}^3$; AU = 149.6 × 10⁶ km; SC = 1371 W/m²; c = 3 × 10⁵ km/s; $m_{GOCE} = 1050 \text{ kg}$; $S_{GOCE} = 1.0 \text{ m}^2$; $C_{D,GOCE} = 2.2$; $C_{R,GOCE} = 1.2$; $T_{GOCE} = 10 \text{ mN}$; $J_2 = 1082 \times 10^{-6}$; $J_{2,2} = 1.816 \times 10^{-6}$; $\lambda_{2,2} = -14.9^{\circ}$

πU

Answers: see footnotes below (BUT TRY YOURSELF FIRST !!)