Flight and Orbital Mechanics

Lecture slides

Flight and Orbital Mechanics
AE2-104, lecture hours 17+18: Perturbations
Ron Noomen
October 25, 2012

Example: solar sail spacecraft

Questions:

- what is the purpose of this mission?
- where is the satellite located?
- why does it use a solar sail?
-
[Wikipedia, 2010]

Overview

- Orbital mechanics (recap)
- Irregularities gravity field
- Third-body perturbations
- Atmospheric drag
- Solar radiation pressure
- Thrust
- Relativistic effects

Tidal forces
Thermal forces \longleftarrow Special missions only; not treated here Impacts debris/midrometeoroids

Learning goals

The student should be able to:

- mention and describe the various perturbing forces that may act on an arbitrary spacecraft;
- quantify the resulting accelerations;
- make an assessment of the importance of the different perturbing forces, depending on the specifics of the mission (phase) at hand.

Lecture material:

- these slides (incl. footnotes)

2-dimensional Kepler orbits

[Seligman, 2010]

2-dimensional Kepler orbits

a: semi-major axis [m]
$e:$ eccentricity [-]
θ : true anomaly [deg]

[Cornellise, Schöyer and Wakker, 1979]
E : eccentric anomaly [deg]

2-dimensional Kepler orbits: general equations

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}=\frac{p}{1+e \cos \theta} ; r_{p}=a(1-e) ; \quad r_{a}=a(1+e)
$$

$$
E_{t o t}=E_{k i n}+E_{p o t}=\frac{V^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}
$$

$V^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right) ; \quad V_{\text {circ }}=\sqrt{\frac{\mu}{r}}=\sqrt{\frac{\mu}{a}} ; \quad V_{\text {esc }}=\sqrt{\frac{2 \mu}{r}}$

$$
\frac{\pi}{T} \mathbf{T} U D e l f t
$$

$$
T=2 \pi \sqrt{\frac{a^{3}}{\mu}}
$$

2-dimensional Kepler orbits: equations (ent'd)

ellips: $0 \leq e<1$
$a>0$
$\boldsymbol{E}_{\text {tot }}<0$
$n=\sqrt{\frac{\mu}{a^{3}}}$
Kepler's Equation
$\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}$
$\rightarrow M=E-e \sin E$
$M=n\left(t-t_{0}\right)$
$E_{i+1}=E_{i}+\frac{M-E_{i}+e \sin E_{i}}{1-e \cos E_{i}}$
$r=a(1-e \cos E)$

satellite	altitude [km]	specific energy [km²/s $\mathbf{2 k g}]$
launch platform	0	-62.4
SpaceShipOne	$100+$ (culmination)	-61.4
imaginary sat	100	-30.8
Envisat	800	-27.8
LAGEOS	5900	-16.2
GEO	35900	-4.7

2-dimensional Kepler orbits: equations (cnt'd)

2-dimensional Kepler orbits: equations (ent'd)
parabola: $e=1 \quad a=\infty \quad E_{\text {tot }}=0$

$$
\begin{gathered}
r=\frac{p}{1+\cos \theta} \\
M=\frac{1}{2} \tan \frac{\theta}{2}+\frac{1}{6} \tan ^{3} \frac{\theta}{2} \\
M=n\left(t-t_{0}\right) \\
n=\sqrt{\frac{\mu}{p^{3}}} \\
V^{2}=V_{\text {esc }}^{2}=\frac{2 \mu}{r}
\end{gathered}
$$

2-dimensional Kepler orbits: equations (ent'd)

hyperbola: $e>1 \quad a<0 \quad E_{\text {tot }}>0$

$$
\begin{aligned}
& \tan \frac{\theta}{2}=\sqrt{\frac{e+1}{e-1}} \tanh \frac{F}{2} \\
& M=e \sinh F-F \\
& M=n\left(t-t_{0}\right) \\
& n=\sqrt{\frac{\mu}{(-a)^{3}}} \\
& r=a(1-e \cosh F) \\
& V^{2}=V_{e s c}^{2}+V_{\infty}^{2}=\frac{2 \mu}{r}+V_{\infty}^{2}
\end{aligned}
$$

3-dimensional Kepler orbits

$\Omega:$ right ascension of the ascending node, or longitude of the ascending node [deg]
ω : argument of pericenter [deg]
$u=\omega+\theta$: argument of latitude [deg]

coordinates transformations

1) from spherical $(r, \lambda, \delta)(\lambda$ in $X-Y$ plane; δ w.r.t. $X-Y$ plane) to cartesian ($\mathbf{x}, \mathrm{y}, \mathrm{z}$):

$$
\begin{aligned}
& x=r \cos \delta \cos \lambda \\
& y=r \cos \delta \sin \lambda \\
& z=r \sin \delta
\end{aligned}
$$

2) from cartesian ($\mathbf{x}, \mathbf{y}, \mathrm{z}$) to spherical $(\mathbf{r}, \lambda, \boldsymbol{\delta})$:

$$
\begin{aligned}
& r=\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right) \\
& \mathbf{r}_{\mathrm{xy}}=\operatorname{sqrt}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \\
& \lambda=\operatorname{atan} 2\left(\mathrm{y} / \mathrm{r}_{\mathrm{xy}}, \mathrm{x} / \mathrm{r}_{\mathrm{xy}}\right) \\
& \delta=\operatorname{asin}(\mathrm{z} / \mathrm{r})
\end{aligned}
$$

Orbital perturbations: introduction

Questions:

- what forces?
- magnitude of forces?

- how to model/compute in satellite orbit?
- analytically? numerically?
- accuracy?
- efficiency?

Inclusion in orbit modeling

Option 1: include directly in equation of motion

$$
\frac{d \mathbf{x}^{2}}{d t^{2}}=\mathbf{a}_{\text {main }}+\mathbf{a}_{\Delta g r a v}+\mathbf{a}_{\text {drag }}+\mathbf{a}_{\text {solrad }}+\mathbf{a}_{3 \text { rdbody }}+\text { etcetera }
$$

Option 2: express as variation of orbital elements

$$
\text { e.g. } \frac{d a}{d t}=\frac{2 a^{2}}{\sqrt{\mu p}}\left[\operatorname{Se} \sin \theta+N \frac{p}{r}\right]
$$

(not further treated here; cf. ae4-874 and ae4-878)

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Irregularities gravity field

Already treated in lecture hours $15+16$
e.g., North-South acceleration due to J_{2} :

$$
a c c=-3 \mu J_{2} R_{e}^{2} r^{-4} \sin (\delta) \cos (\delta)
$$

e.g., East-West acceleration due to $\mathrm{J}_{2,2}$:

$$
a c c=-6 \mu J_{2,2} R_{e}^{2} r^{-4} 3 \cos (\delta) \sin \left(2\left(\lambda-\lambda_{2,2}\right)\right)
$$

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Third-body perturbations

Attractional forces (by definition):

- satellite <-> Earth
- satellite <-> perturbing body
- Earth <-> perturbing body

Third-body perturbations (cnt'd)

Attractional forces (practice):

- Earth attracts satellite
- perturbing body attracts satellite
- perturbing body attracts Earth

$$
M_{\text {sat }} \ll M_{E}, M_{S}
$$

- net effect counts

$$
\ddot{\mathbf{r}_{s}}=-G \frac{M_{\operatorname{main}}}{r_{s}^{3}} \mathbf{r}_{s}+G M_{p}\left(\frac{\mathbf{r}_{p s}}{r_{p s}^{3}}-\frac{\mathbf{r}_{p}}{r_{p}^{3}}\right)
$$

Third-body perturbations (ent'd)

perturbing acceleration $\mathbf{a}_{\mathbf{p}}$:

$$
\mathbf{a}_{\mathbf{p}}=\mu_{p}\left\{\frac{\mathbf{r}_{p s}}{\left\|\mathbf{r}_{p s}\right\|^{3}}-\frac{\mathbf{r}_{p}}{\left\|\mathbf{r}_{p}\right\|^{3}}\right\}
$$

maximum when on straight line:
main sat
$3^{\text {rd }}$ body

$$
\left(\frac{a_{p}}{a_{\text {main }}}\right)_{\max }=2 \frac{m_{p}}{m_{\operatorname{main}}}\left(\frac{r_{s}}{r_{p}}\right)^{3}
$$

Third-body perturbations (ent'd)

(perturbing body)

2 situations:

1. heliocentric (i.e., orbits around Sun)
2. planetocentric (i.e., orbits around Earth)

Third-body perturbations (ent'd)

Conclusions:

- influence increases with distance to Sun

Third-body perturbations (cnt'd)

Conclusions:

- influence Sun decreases with distance to Sun
- influence planets increases with distance to Sun

Third-body perturbations (ent'd)

Conclusions:

- in Solar System: Sun dominant

TUDelft - near Earth: Earth itself dominant - central body vs. $3^{\text {rd }}$ body perturbation ??

Third-body perturbations (cnt'd)

Sphere of Influence:

- area around planet where gravity from planet is dominant (compared with gravity of other celestial bodies)
- 3-dimensional shape
- boundary
- $1^{\text {st. }}$-order approximation: sphere with constant radius
- definition for determination location:
relative acceleration w.r.t. system $1=$ relative acceleration w.r.t. system 2

Earth

Third-body perturbations (cnt'd)

$$
\frac{a c c c_{S u n, 3 r d}}{\text { acc }_{\text {Earth,main }}}=\frac{\text { acc } \text { Earth,3rd }^{\text {acc }} \text { Sun,main }}{\text { act }}
$$

without derivation :

$$
r_{S o I}=r_{3 r d}\left(\frac{M_{\text {main }}}{M_{3 r d}}\right)^{0.4}
$$

example : Earth main body, Sun $3^{\text {rd }}$ body :

$$
r_{S o I, E a r t h}=\text { dist Earth-Sun }\left(\frac{M_{\text {Earth }}}{M_{\text {Sun }}}\right)^{0.4} \approx 930,000 \mathrm{~km}
$$

Third-body perturbations (ent'd)

冬 planet	Sphere of Influence		
	$[\mathrm{km}]$	$[\% \mathrm{AU}]$	[\% distance planet-Sun]
Mercury	1.1×10^{5}	0.08	0.2
Venus	6.2×10^{5}	0.4	0.6
Earth	9.3×10^{5}	0.6	0.6
Mars	5.8×10^{5}	0.4	0.3
Jupiter	4.8×10^{7}	32.2	6.2
Saturn	5.5×10^{7}	36.5	3.8
Uranus	5.2×10^{7}	34.6	1.8
Neptune	8.7×10^{7}	57.9	1.9
Pluto	3.2×10^{6}	2.1	0.1

Third-body perturbations (ent'd)

(perturbing body)

2 situations:

1. heliocentric (i.e., orbits around Sun)
2. planetocentric (i.e., orbits around Earth)

Third-body perturbations (cnt'd)

center of
ref. frame

Third-body perturbations (cnt'd)

Conclusions:

- influence of Sun as $3^{\text {rd }}$ body increases with distance from Earth - effective $3^{\text {rd }}$ body acceleration by $\operatorname{Sun} O\left(10^{-6}\right) \mathrm{m} / \mathrm{s}^{2}$

Third-body perturbations (cnt'd)

(perturbing body)

Question 1:
a) Compute the dimension of the Sphere of Influence of the Earth (when the Sun is considered as the perturbing body). The SoI is given by the following general equation:

$$
r_{S o I}=r_{3 r d}\left(\frac{M_{\text {main }}}{M_{3 r d}}\right)^{0.4}
$$

b) What is the value of the radial attraction exerted by the Earth at this distance? (if you were unable to make the question a, use a value of $1 \times 10^{6} \mathrm{~km}$ for this position).
c) What is the effective gravitational acceleration by the Sun at this position? Assume that Earth, Sun and satellite are on a straight line.
d) What is the relative perturbation of the solar attraction, compared to that of the main attraction of the Earth?
Data: $1 \mathrm{AU}=149.6 \times 10^{6} \mathrm{~km}, \mathrm{~m}_{\text {Sun }}=2.0 \times 10^{30} \mathrm{~kg}, \mathrm{~m}_{\text {Earth }}=6.0 \times 10^{24} \mathrm{~kg}, \mu_{\text {Sun }}=1.3271 \times 10^{11}$ $\mathrm{km}^{3} / \mathrm{s}^{2}, \mu_{\text {Earth }}=398600 \mathrm{~km}^{3} / \mathrm{s}^{2}$.
Answers: see footnotes below (BUT TRY YOURSELF FIRST!!)

Third-body perturbations (cnt'd)

Conclusions:

- influence of Moon as $3^{\text {rd }}$ body increases with distance from Earth

Third-body perturbations (cnt'd)

Conclusions:

- Earth dominant (central body; within SoI)

TUD

- Moon most important $3^{\text {rd }}$ body; Sun directly after
- effect of planets about 4 orders of magnitude smaller

Third-body perturbations (cnt'd)

[Wikimedia, 2010]

celestial body	$\boldsymbol{\Delta V}$-budget for GEO sat [m/s/yr]
Moon	36.93
Sun	14.45

Third-body perturbations (cnt'd)

Question 2:

Consider a hypothetical planet X with mass $5 \times 10^{25} \mathrm{~kg}$, orbiting the Sun in a circular orbit with radius 3 AU . The orbital plane coincides with the ecliptic (i.e., the orbital plane of the Earth).
a) Make a sketch of the situation when the gravitational attraction of this planet X on satellites around the Earth is largest.
b) Idem for the case when this would be smallest.
c) Compute the maximum and minimum perturbing acceleration due to this planet X , on a geostationary satellite (radius orbit is 42200 km).

Data: $\mathrm{G}=6.673 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} / \mathrm{s}^{2} ; \mu_{\text {Earth }}=398600 \mathrm{~km}^{3} / \mathrm{s}^{2} ; 1 \mathrm{AU}=149.6 \times$ $10^{6} \mathrm{~km}$

Answers: see footnotes below (BUT TRY YOURSELF FIRST!!)

Third-body perturbations (cnt'd)

Question 3:

The treatment of the motion of a satellite is driven by the fact whether the vehicle is inside the Sphere of Influence (SoI) or not.
a) Describe the concept of the SoI, and give its mathematical (underlying) definition.
b) The dimension of the SoI can be approximated by the equation given below. Consider the Earth-Moon system: $\mu_{\text {Earth }}=398600 \mathrm{~km}^{3} / \mathrm{s}^{2}, \mu_{\text {Moon }}=4903 \mathrm{~km}^{3} / \mathrm{s}^{2}$, average distance Earth-Moon $=384,000 \mathrm{~km}$. What is the radius of the SoI of the Moon?

$$
r_{S o I}=r_{3 r d}\left(\frac{M_{\text {main }}}{M_{3 r d}}\right)^{0.4}
$$

c) Suppose that the Earth and Moon have equal masses. What would now be the radius of the SoI? What would it be from a physical point of view? Discuss the results.

ANSWERS: see footnotes below. TRY YOURSELF FIRST!
Ivレeル!

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Atmosphere

$$
\mathbf{a}_{\mathrm{drag}}=-\frac{C_{D} S}{m} \frac{1}{2} \rho V^{2} \frac{\mathbf{V}}{V} ; \quad \rho=\rho_{0} \exp (-\Delta h / H)
$$

[Wertz, 2009](!%5B%5D(./images/dd67a63966e8fc12561e839cd8b344b0_463_1679_404_1942.jpg))
[Wertz, 2009](!%5B%5D(./images/dd67a63966e8fc12561e839cd8b344b0_463_1679_404_1942.jpg))

Atmosphere (ent'd)

after [Wertz, 2009](!%5B%5D(./images/dd67a63966e8fc12561e839cd8b344b0_463_1679_404_1942.jpg)):	Altitude [km]	Atmospheric density [$\mathrm{kg} / \mathrm{m}^{3}$]	
		minimum	maximum
	200	1.8×10^{-10}	3.5×10^{-10}
	300	8.2×10^{-12}	4.0×10^{-11}
	400	7.3×10^{-13}	7.6×10^{-12}
	500	9.0×10^{-14}	1.8×10^{-12}
	600	$1.7 \times 10-14$	4.0×10^{-13}
	700	5.7×10^{-15}	1.5×10^{-13}
	800	3.0×10^{-15}	4.4×10^{-14}
	900	1.8×10^{-15}	1.9×10^{-14}
	1000	1.2×10^{-15}	8.8×10^{-15}
	1250	4.7×10^{-16}	2.6×10^{-15}
TUDelft	1500	2.3×10^{-16}	1.2×10^{-15}

Atmosphere (cnt'd)

[Wertz, 2009](!%5B%5D(./images/dd67a63966e8fc12561e839cd8b344b0_463_1679_404_1942.jpg)):

Satellite	Mass (kg)	Shape	Max. XA $\left(\mathrm{m}^{2}\right)$	Min. XA (m^{2})	Max. Drag Coef.	Min. Drag Coef.	Max. Ballistic Coef. ($\mathrm{kg} / \mathrm{m}^{2}$)	Min. Ballistic Coef. $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Type of Mission
Oscar-1	5	box	0.075	0.0584	4	2	42.8	16.7	Comm.
Intercos.-16	550	cylind.	2.7	3.16	2.67	2.1	82.9	76.3	Scientific
Viking	277	octag.	2.25	0.833	4	2.6	128	30.8	Scientific
Explorer-11	37	octag.	0.18	0.07	2.83	2.6	203	72.6	Astronomy
Explorer-17	188.2	sphere	0.621	0.621	2	2	152	152	Scientific
Sp. Teles.	11,000	cylind.*	112	14.3	3.33	4	192	29.5	Astronomy
OSO-7	634	9 -sided	1.05	0.5	3.67	2.9	437	165	Solar Physics
OSO-8	1,063	cylind.*	5.99	1.81	3.76	4	147	47.2	Solar Physics
Pegasus-3	10,500	cylind.*	264	14.5	3.3	4	181	12.1	Scientific
Landsat-1	891	cylind.*	10.4	1.81	3.4	4	123	25.2	Rem. Sens.
ERS-1	2,160	box*	45.1	4	4	4	135	12.0	Rem. Sens.
LDEF-1	9,695	12-face	39	14.3	2.67	4	169	93.1	Environment
HEAO-2	3,150	hexag.	13.9	4.52	2.83	4	174	80.1	Astronomy
Vanguard-2	9.39	sphere	0.2	0.2	2	2	23.5	23.5	Scientific
SkyLab	76,136	cylind.*	462	46.4	3.5	4	410	47.1	Scientific
Echo-1	75.3	sphere	731	731	2	2	0.515	0.515	Comm.
Extrema							437	0.515	

*With solar arrays

Atmosphere ($\mathbf{e n t}$ 'd)

altitudes of Mir and GFZ-1:

Atmosphere (cnt'd)

TUDeft

Atmosphere (cnt'd)

circular orbits:

$$
\begin{array}{ll}
\Delta a_{2 \pi}=-2 \pi\left(C_{D} A / m\right) \rho a^{2} & {[\mathrm{~m}]} \\
\Delta T_{2 \pi}=-6 \pi^{2}\left(C_{D} A / m\right) \rho a^{2} / V & {[\mathrm{~s}]} \\
\Delta V_{2 \pi}=\pi\left(C_{D} A / m\right) \rho a V & {[\mathrm{~m} / \mathrm{s}]} \\
\Delta e_{2 \pi}=0 & {[-]} \\
L=-H / \Delta a_{2 \pi} & {[\mathrm{rev}]}
\end{array}
$$

Atmosphere (cnt'd)

GOCE:

- launch date: March 17, 2009
- altitude: $\mathbf{2 5 0} \mathbf{~ k m}$
- phase solar cycle?

THDelft

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Solar radiation pressure

- amount of energy emitted by Sun at 1 AU distance: $\approx 1371 \mathrm{~W} / \mathrm{m}^{2}$
- value hardly dependent on solar activity \rightarrow "Solar Constant" (SC)
- Solar radiation pressure [N/m²]: SC / c
- energy reduces with distance w.r.t. Sun: energy $(r)=S C / r^{2}$

$$
\mathbf{a}_{\text {rad }}=(1+\rho) \frac{1}{\left(\| \mathbf{r}_{\text {Sun-sat/AU } \|)^{2}}^{c} \frac{S C}{m} \frac{A}{\left\|\mathbf{r}_{\text {Sun-sat }}\right\|} \approx 4.5 \times 10^{-6} \frac{A}{m}\right.} \begin{aligned}
& \text { Sun-sat } \\
& \text { reflection } \\
& \text { coefficient }
\end{aligned} \quad \begin{aligned}
& \text { unit vector } \\
& \text { Sun } \rightarrow \text { sat }
\end{aligned}
$$

Solar radiation pressure (ent'd)

Solar radiation pressure ($\mathbf{c n t}{ }^{\prime} \mathbf{d}$)

Perturbations:

- Irregularities gravity field
- Third body
- Atmospheric drag
- Solar radiation pressure
- Thrust

Thrust

$$
\begin{aligned}
& \ddot{r}-r \dot{\theta}^{2}+\mu / r^{2}=a_{T} \sin \alpha \\
& \frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=a_{T} \cos \alpha \\
& \left(o r: \ddot{\theta} r+2 \dot{\theta} \dot{r}=a_{T} \cos \alpha\right)
\end{aligned}
$$

[Petropoulos 2001]

Thrust (cnt'd)

Example 1:
acceleration of $0.190 \mathrm{~mm} / \mathrm{s}^{2}$ in along-track direction (i.e., $\mathrm{a}=0^{\circ}$)

Thrust (cnt'd)

Example 2:
acceleration of $0.190 \mathrm{~mm} / \mathrm{s}^{2}$ in radial direction (i.e., $\mathrm{a}=90^{\circ}$)

Thrust (cnt'd)

Example 3:
orbit of SMART-1
[ESA, 2010]

Thrust (ent'd)

High thrust:

- can compete against central gravity (i.e., launch)
- instantaneous velocity changes (orbits around Earth + interplanetary orbits)

Low thrust:

- attractive since high $\mathrm{I}_{\text {sp }}$
- primary propulsion for interplanetary missions
- station-keeping
- since 2012: transfer LEO \rightarrow GEO

Summary: Low Earth Orbit (1)

Summary: Low Earth Orbit (2)

Summary: Low Earth Orbit (3)

Conclusions near-Earth orbits:

- J_{2} acceleration is dominant perturbation for all LEO
- low thrust already important
- atmospheric drag dominant perturbation at very low altitudes
- Solar, Iunar and $\mathrm{J}_{2,2}$ accelerations very small, but build up for GEO
- Kepler orbit very good $1^{\text {st--order approximation (2-4 }}$ orders of magnitude Δ)

Summary: interplanetary orbit (1)

Summary: interplanetary orbit (2)

Conclusions interplanetary orbits:

- low thrust important
- Solar radiation can be important
- Kepler orbit very good $1^{\text {st-order approximation (4-6 }}$ orders of magnitude Δ)

Summary perturbing forces

Question 4:
a) Mention the 5 different categories of perturbing forces that may act on an arbitrary vehicle. Describe each category briefly (about 5 lines per item).
b) Give a brief description of the (relative) importance of these categories.

Summary perturbing forces

Question 5:

a) Mention the 5 different categories of perturbing forces that may act on an arbitrary vehicle.
b) Compute the magnitude of the main gravitational force exerted by the Earth's gravity field.
c) Compute the magnitude of the various perturbing sources.

Data: $\mu_{\text {Earth }}=398600 \mathrm{~km}^{3} / \mathrm{s}^{2} ; \mu_{\text {Moon }}=4903 \mathrm{~km}^{3} / \mathrm{s}^{2} ; \mu_{\text {sun }}=1.327 \times 10^{11}$ $\mathrm{km}^{3} / \mathrm{s}^{2} ; \mathrm{R}_{\mathrm{e}}=6378 \mathrm{~km} ; \mathrm{h}_{\text {GOCE }}=250 \mathrm{~km} ; \rho_{\text {atm,avg }}=6.2 \times 10^{-11} \mathrm{~kg} / \mathrm{m}^{3}$; $\mathrm{AU}=149.6 \times 10^{6} \mathrm{~km} ; \mathrm{SC}=1371 \mathrm{~W} / \mathrm{m}^{2} ; \mathrm{c}=3 \times 10^{5} \mathrm{~km} / \mathrm{s} ; \mathrm{m}_{\mathrm{GOCE}}=$ $1050 \mathrm{~kg} ; \mathrm{S}_{\text {GOCE }}=1.0 \mathrm{~m}^{2} ; C_{\mathrm{D}, \mathrm{GOCE}}=2.2 ; \mathrm{C}_{\mathrm{R}, \mathrm{GOCE}}=1.2 ; \mathrm{T}_{\text {GOCE }}=10$ $\mathrm{mN} ; \mathrm{J}_{2}=1082 \times 10^{-6} ; \mathrm{J}_{2,2}=1.816 \times 10^{-6} ; \lambda_{2,2}=-14.9^{\circ}$

