Drinking Water 1

Activated carbon filtration

Dr.ir. S.G.J. Heijman

Monday, 08 October 2007

Delft University of Technology

Contents

- 1. Introduction
- 2. Possible experiments
- 3. Freundlich-isotherm
- 4. Batch versus column
- 5. Activated carbon filtration

Granular Activated Carbon (GAC)

Powdered Activated Carbon (PAC)

Monday, 08 October 2007

Production and regeneration

Which substances?

- Odour and taste
- Pesticides
- Trihalomethanes
- DOC/TOC
- Colour
- AOX

Principle of adsorption

Principle of adsorption

- •Polarity of the molecule
- •Size of the molecule
- •Size of the pore
- •Surface area adsorbent
- Competition of other organic molecules
- •Pore blocking of larger molecules
- •Pre-loading of the adsorbens with other organic molecules

Operation of activated carbon

 Odour, taste
 50.000 BV
 (1 €ct/m3)

 Bentazon, atrazine
 25.000 BV
 (2 €ct/m3)

 THM, AOX
 15.000 BV
 (3 €ct/m3)

EDTA, colour 2.500 BV (20 €ct/m3)

Introduction Breakthrough curve

Removal of Atrazine

Costs of activated carbon filtration

Activated carbon filtration Kralingen

- Problem: clogging of the filters with suspended matter and biomass
- Solution: backwashing
- Problem: front in the column is disturbed
- Solution: startification

15

Possible experiments

Powdered activated carbon

•Jar test predicts effluent concentration as a function of dose and contact time

•Time of the experiment about one hour

Possible experiments

Adsorption isotherm

- Mix water and adsorbens continuously
- Wait for equilibrium
- Measure remaining pesticide
- Time of the experiment: one day to two weeks

Possible experiments

Rapid small scale column tests

- Small column with small grains 0.1 mm
- Measure breaktrough curve
- 1 weak to 2 month

Possible experiments Pilot plant test

- Measure breakthrough at real scale with real activated carbon
- Experiment takes several month to two years.

Adsorption isotherm

Adsorption isotherm = relation between the adsorbed amount of a compound and the amount that remains in the bulk liquid at equilibrium

Freundlich-isotherm $q_{max} = \frac{x}{m} = K \cdot c^{n}$

- qmax = loading capacity (g/kg)
- c = concentration (g/m3)
- x = adsorbed mass of substance (g)
- m = mass activated carbon (kg)
- K = Freundlich constant (g/kg)*(m3/g)ⁿ
- n = Freundlich constant (-)

!! Mind units !!

Adsorption isotherm

high q: easy to remove low q : difficult to remove

Freundlich constants K and n

K and n are constants, but depend on:

- type of carbon
- pH
- characteristics of the compound to be adsorbed
- presence of natural organic matter
- temperature

Degree of adsorption to be determined with Structural Activity Relationship (SAR)

S.A.R.		
Alkanes	K	n
CH3CI	6.2	0.80
CHCI3 (chloroform)	95.5	0.67
CH2CI - CH2CI (DCEA)	129	0.53
CH2CI - CHCI - CH3 (1,2 DCP)	313	0.59
Alkenes (compounds with doub	le bounds are e	easier to remove)
CCI2 = CHCI (TCE)	2000	0.48
Pesticides		
dieldrin (organochlorine)	17884	0.51
atrazine (organonitrogen)	38700	0.29
dinoseb (fenolderivate)	30400	0.28
2,4,5 TP (fenoxycarbonicacid)	15392	0.38
Aromates		
C6H6 (benzene)	1260	0.53
C6H5CH3 (toluene)	5010	0.43
C6H5OH (phenol)	503	0.54

Batch versus column

Batch versus column PAC Scheveningen

Monday, 08 October 2007

 $C_2 - C_0 = -W_1 \cdot q_1 - W_2 \cdot q_2$

Batch versus column

- Advantages PAC:
 - Minimal investment costs (if combined with coagulation/sedimentation)
 - Small particles less pore blocking
- Disadvantages PAC:
 - Effluent concentration = equilibrium concentration
 - No regeneration possible

Batch versus column

- Advantages GAC:
 - Effluent concentration = zero (until breaktrough)
 - Regeneration possible
 - Robust againt peak concentrations
 - Also AOC-removal by microorganism
- Disadvantages GAC:
 - High investment costs
 - Pore blocking/ blocking of the inner part of the grain

Contents

- 1. Introduction
- 2. Possible experiments
- 3. Freundlich-isotherm
- 4. Batch versus column
- 5. Activated carbon filtration
- 6. Alternative configurations

Activated carbon filtration Principle

Definition of terms

- = flow [m³/h]
 - = width [m]
 - = length [m]
 - = height [m]
 - = volume [m³]
 - = influent concentration [g/m³]
 - = effluent concentration [g/m³]
 - = operating time [h]
- = bed volume [m³/m³]
- = contact time [h]
 - = velocity [m/h]

Basic equations

- = flow [m³/h]
- = volume [m³]
- = influent concentration [g/m³]
- = effluent concentration [g/m³]
- = operating time [h]
- = bed volume [m³/m³]
- = loading [g/kg]
- = density of carbon [kg/m³]
- = carbon usage [g/m³]

$$q = \frac{Q \cdot T \cdot c_0}{V \cdot \rho} = \frac{BV \cdot c_0}{\rho}, \text{ therefor } BV = \frac{q \cdot \rho}{c_0} = \frac{K \cdot c_0^{-n} \cdot \rho}{c_0}$$
$$W = \frac{\rho \cdot 1000}{BV}$$

Activated carbon filtration Example (1)

EBCT [min]	10		40			
BV [m ³ /m ³]	5000	15000	30000	5000	15000	30000
T [h]	833	2500	5000	3300	10000	20000
r [kg/m³]			500			500
W [g/m ³]	100	33	17	100	33	17
q [g/kg]	0.01	0.03	0.06	0.01	0.03	0.06
$c_0 = 0.001 \text{ g/m}^3$						
q [g/kg]	10	30	60	10	30	60
$c_0 = 1 \text{ g/m}^3$						

Example (2) Freundlich

Effluent standard	$c_e = 0.0001 \text{ g/m}^3$	n = 0.2 K = 2 q = 0.3	20	200 3
30 g/kg				
	$c_{e} = 0.1 \text{ g/m}^{3}$	n = 0.2		
		K = 2	20	200
		q = 1.3	13	130 g/kg
	$c_{e} = 10 \text{ g/m}^{3}$	n = 0.2		
		K = 2	20	200
		q = 3	30	300 g/kg

Example (3)

0.1 1 10 g/kg Suppose q = $C_{e} = 0.001 \text{ g/m}^{3}$ 5000 50000 500000 m³/m³ BV =W =10 1 0.1 g/m³ $C_{e} = 0.001 \text{ g/m}^{3}$ m^3/m^3 5000 BV = 50 500 W =10000 1000 100 g/m³

Contact time versus operating time

criterion = TOC-reduction of 50%

elft

Removal of colour

Activated carbon filtration Example (1)

Breakthrough curve THM PS Berenplaat ($c_0 = 7 - 20 \text{ mg/l}$)

Activated carbon filtration Example(2)

Breakthrough curve benzene ground water treatment Griftpark ($c_0 = 55 - 75 \text{ mg/l}$)

Practice (1)

Company	Location	Contact time (min)	Velocity (m/h)	Run time (months)	Bed volume (m ³ /m ³)
WBE	Berenplaat	12	20	15	55000
PWN	Andijk	2 x 17.5	10.3	11 - 12	14000
WNWB	Zevenbergen	37	3,4	12	15000
DeltaN	Ouddorp	10.7 – 54.5	1.1 – 5.6	?	?
WMN	Zeist	2 x 12	7.5	10	21000 - 38000
GWA	Weesperkaspel	17 - 20	3.8 – 4.4	12	31000
WMO		12	11.1	24	50000

Practice (2)

Company	Location	regeneration criteria	wash criteria	wash frequency
WBE	Berenplaat	Odor/Taste	time	1 x per week
PWN	Andijk	THM < 70 mg/l	resistance	5 x per run time
WNWB	Zevenbergen	-	resistance	not
DeltaN	Ouddorp	-	time	1 x per week
WMN	Zeist	TCE < 0.2 - 1 mg/l	resistance	not
GWA	Weesperkaspel	TCE 1 mg/l	resistance	not
WMO		5	resistance	not

Activated carbon filtration GAC Andijk

″ T∪Delft

44

GAC Andijk

Parameter	before carbon	after carbon
colour (mg Pt/l)	4	1
UV extinction	5.1	1.1
TOC (mg C/l)	6.0	2.6
KMnO4 nº (mg/l)	10.3	2.5
CHCl ₃ (mg/l)	21	15
CHBrCl ₂ (mg/l)	24	7
CHBr ₂ CI (mg/l)	17	1
CHBr ₃ (mg/l)	3	<1
TTHM (mg/l)	65	<24
AOCI (mg/l)	80	10
EOCI (mg/l)	10	1.5
Turbitity (FTU)	0.2	0.1

GAC Hendrik Ido Ambacht

Monday, 08 October 2007

Schematical representation of carbon filter

Alternative configurations

Alternative configurations

Biological activated carbon filtration

ozonation followed by activated carbon filtration

ozone --> oxidation organic compounds --> increase of AOC --> increase of bacteria --> increase of degradation of adsorbed substances --> adsorption new substance

disadvantage: higher AOC concentrations and increase of bacteria --> regrowth bacteria in distribution system--> post-disinfection

Monday, 08 October 2007

Alternative configurations

