
2.2  Asymptotic Order of Growth

• definitions and notation (2.2)
• examples (2.4)
• properties (2.2)
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds.  T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds.  T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Ex:   T(n) = 32n2 + 17n + 32.

Q. Is T(n)…

1) O(n2)?
2) Ω(n3)?
3) O(n3)?
4) Θ(n)?

5) O(n)?
6) Ω(n2)? 
7) Ω(n)?
8) Θ(n2)?
9) Θ(n3)?
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds.  T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds.  T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Ex:   T(n) = 32n2 + 17n + 32.

A.  
� T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2) .
� T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3).
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Notation

Slight abuse of notation.  T(n) = O(f(n)).
� Asymmetric:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n) ≠ g(n).

� Better notation:  T(n) ∈ O(f(n)).



5

Notation

Slight abuse of notation.  T(n) = O(f(n)).
� Asymmetric:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n) ≠ g(n).

� Better notation:  T(n) ∈ O(f(n)).

Meaningless statement.  Any comparison-based sorting algorithm requires at 
least O(n log n) comparisons. (Watch out!)

Q. What is wrong with this statement?
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Notation

Slight abuse of notation.  T(n) = O(f(n)).
� Asymmetric:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n) ≠ g(n).

� Better notation:  T(n) ∈ O(f(n)).

Meaningless statement.  Any comparison-based sorting algorithm requires at 
least O(n log n) comparisons. (Watch out!)

Q. What is wrong with this statement?
A. 

� Statement doesn't "type-check”: O(f(n)) is for upper bounds
� Use Ω for lower bounds.



2.4  A Survey of Common Running Times
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Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an 
array of length n? (1 min)

� find the maximum value
� insertion sort (p.113 of Bailey)
� merge sort (p.115-118 of Bailey)
� find in a binary search tree (p.331-)
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Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an 
array of length n? (1 min)

� find the maximum value O(n)
� insertion sort (p.113 of Bailey) O(n2)
� merge sort (p.115-118 of Bailey) O(n log n)
� find in a binary search tree (p.331-) O(log n)
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Linear Time:  O(n)

Linear time.  Running time is at most a constant factor times the size of the 
input. 

Computing the maximum.  Compute maximum of n numbers a1, …, an.

max ← a1
for i = 2 to n {
   if (ai > max)
      max ← ai
}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn  

into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.
Pf.  After each comparison, the length of output list increases by 1.

i = 1, j = 1
while (both lists are nonempty) {
   if (ai ≤ bj) append ai to output list and increment i
   else(ai ≤ bj)append bj to output list and increment j
}
append remainder of nonempty list to output list
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O(n log n) Time

O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting.  Mergesort and heapsort are sorting algorithms that perform O(n 
log n) comparisons.

Largest empty interval.  Given n time-stamps x1, …, xn on which copies of a 

file arrive at a server, what is largest interval of time when no copies of the 
file arrive?

O(n log n) solution.  Sort the time-stamps.  Scan the sorted list in order, 
identifying the maximum gap between successive time-stamps.

also referred to as linearithmic time
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points.  Given a list of n points in the plane (x1, y1), …, (xn, 
yn), find the pair that is closest.

O(n2) solution.  Try all pairs of points.

Remark.  Ω(n2) seems inevitable, but this is just an illusion.

min ← (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
   for j = i+1 to n {
      d ← (xi - xj)2 + (yi - yj)2

      if (d < min)
         min ← d
   }
}

don't need to
take square roots

see chapter 5
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Cubic Time:  O(n3)

Cubic time.  Enumerate all triples of elements.

Set disjointness.  Given n sets S1, …, Sn each of which is a subset of

1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution.  For each pairs of sets, determine if they are disjoint.

foreach set Si {
   foreach other set Sj {
      foreach element p of Si {
         determine whether p also belongs to Sj
      }
      if (no element of Si belongs to Sj)
         report that Si and Sj are disjoint
   }
}



Routing in ad-hoc wireless networks

 only some nodes can communicate directly with 
each other

 how to route messages to nodes that cannot be 
reached directly?

 common approach is to create a hierarchy

Goal. are there k cluster heads that do not interfere 
during simultaneous transmissions?

Similar to
Given. a set of potential locations for e.g. a Starbucks 

and connections if they interfere. 
Goal. are there k locations that do not interfere?

cluster heads
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Polynomial Time with a fixed parameter:  O(nk) Time

Independent set of size k.  Given a graph, are there k nodes such that no 
two are joined by an edge?

O(nk) solution.  Enumerate all subsets of k nodes.

� Check whether S is an independent set = O(k2).
� Number of k element subsets = 

� O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
   check whether S is an independent set
   if (S is an independent set)
      report S
   }
}
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n

k

 

 
 

 

 
 =

n ( n −1) ( n −2 ) L ( n −k +1)
k ( k −1) ( k −2 ) L (2 ) (1)

 ≤  
n k

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set.  Given a graph, what is maximum size of an independent 
set?

O(n2 2n) solution.  Enumerate all subsets.

Advanced algorithms (using bounded search trees): 
   O*(1.3803n) or even O*(1.2227n) 

S* ← φ
foreach subset S of nodes {
   check whether S is an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
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Properties

Transitivity.
� If f is O(g) and g is O(h) then f is O(h).
� If f is Ω(g) and g is Ω(h) then f is Ω(h). 
� If f is Θ(g) and g is Θ(h) then f is Θ(h).

Additivity.
� If f is O(h) and g is O(h) then f + g is O(h). 
� If f is Ω(h) and g is Ω(h) then f + g is Ω(h).
� If f is Θ(h) and g is Θ(h) then f + g is Θ(h).
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Asymptotic Bounds for Some Common Functions

Polynomial.  a0 + a1n + … + adnd  is Θ( f(n) ) if ad > 0. 

Q.  What is the simplest f(n)? (where simplest is the least number of terms)
A.  

Q.  For every x > 0, log n is O(nx)  ?     ( or nx  is O(log n) ? )
A.  

Q.  For every r > 1 and every d > 0  is   rn is O(nd)  ?    ( or nd is O(rn) ? )
A.  
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Asymptotic Bounds for Some Common Functions

Polynomial.  a0 + a1n + … + adnd  is Θ( f(n) ) if ad > 0. 

Q.  What is the simplest f(n)? (where simplest is the least number of terms)
A.  f(n) = nd

Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n.

Q.  For every x > 0, log n is O(nx)  ?     ( or nx is O(log n) ? )
A.  

Q.  For every r > 1 and every d > 0  is   rn is O(nd)  ?    ( or nd is O(rn) ? )
A.  
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Asymptotic Bounds for Some Common Functions

Polynomial.  a0 + a1n + … + adnd  is Θ( f(n) ) if ad > 0. 

Q.  What is the simplest f(n)?
A.  f(n) = nd

Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n.

Q.  For every x > 0, log n is O(nx)  ?     ( or nx is O(log n) ? )
A.  Yes. log grows slower than every polynomial.

Q.  For every r > 1 and every d > 0  is   rn is O(nd)  ?    ( or nd is O(rn) ? )
A.  
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Asymptotic Bounds for Some Common Functions

Polynomial.  a0 + a1n + … + adnd  is Θ( f(n) ) if ad > 0. 

Q.  What is the simplest f(n)?
A.  f(n) = nd

Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n.

Q.  For every x > 0, log n is O(nx)  ?     ( or nx is O(log n) ? )
A.  Yes. log grows slower than every polynomial.

Q.  For every r > 1 and every d > 0  is   rn is O(nd)  ?    ( or nd is O(rn) ? )
A.  No. Every exponential grows faster than every polynomial.

Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0.
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