2.2 Asymptotic Order of Growth

- definitions and notation (2.2)
- examples (2.4)
- properties (2.2)

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

O(n)?

5)

Ex:
$$T(n) = 32n^2 + 17n + 32$$
.

Q. Is T(n)...

	/	
O(n²)?	6)	$\Omega(n^2)$?
Ω(n³)?	7)	Ω(n)?
O(n ³)?	8)	Θ(n²)?
Θ(n)?	9)	Θ(n³)?
	$Ω(n^3)?$ O(n ³)?	$Ω(n^3)$? 7) $O(n^3)$? 8)

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

```
Ex: T(n) = 32n^2 + 17n + 32.
```

Α.

T(n) is O(n²), O(n³), Ω (n²), Ω (n), and Θ (n²). T(n) is not O(n), Ω (n³), Θ (n), or Θ (n³).

Notation

Slight abuse of notation. T(n) = O(f(n)).

Asymmetric:

- $-f(n) = 5n^{3}; g(n) = 3n^{2}$
- $-f(n) = O(n^3) = g(n)$
- but f(n) ≠ g(n).

Better notation: $T(n) \in O(f(n))$.

Notation

Slight abuse of notation. T(n) = O(f(n)). Asymmetric: $-f(n) = 5n^3$; $g(n) = 3n^2$ $-f(n) = O(n^3) = g(n)$ - but $f(n) \neq g(n)$. Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons. (Watch out!)

Q. What is wrong with this statement?

Notation

Slight abuse of notation. T(n) = O(f(n)). Asymmetric: $-f(n) = 5n^3$; $g(n) = 3n^2$ $-f(n) = O(n^3) = g(n)$ - but $f(n) \neq g(n)$. Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons. (Watch out!)

Q. What is wrong with this statement?

Α.

Statement doesn't "type-check": O(f(n)) is for upper bounds Use Ω for lower bounds.

2.4 A Survey of Common Running Times

Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an array of length n? (1 min) find the maximum value insertion sort (p.113 of Bailey) merge sort (p.115-118 of Bailey) find in a binary search tree (p.331-)

Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an array of length n? (1 min)

find the maximum value	O(n)
insertion sort (p.113 of Bailey)	O(n ²)
merge sort (p.115-118 of Bailey)	O(n log n)
find in a binary search tree (p.331-)	O(log n)

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

$$max \leftarrow a_1$$

for i = 2 to n {
if (a_i > max)
max \leftarrow a_i}
}

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.


```
i = 1, j = 1
while (both lists are nonempty) {
    if (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i
    else append b<sub>j</sub> to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes O(n) time. Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

$$\min \leftarrow (\mathbf{x}_{1} - \mathbf{x}_{2})^{2} + (\mathbf{y}_{1} - \mathbf{y}_{2})^{2}$$
for i = 1 to n {
 for j = i+1 to n {
 d \leftarrow (\mathbf{x}_{i} - \mathbf{x}_{j})^{2} + (\mathbf{y}_{i} - \mathbf{y}_{j})^{2}
 if (d < min)
 min \leftarrow d
 }
}

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. f see chapter 5

Cubic Time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
    foreach other set S<sub>j</sub> {
        foreach element p of S<sub>i</sub> {
            determine whether p also belongs to S<sub>j</sub>
        }
        if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
            report that S<sub>i</sub> and S<sub>j</sub> are disjoint
    }
}
```


Routing in ad-hoc wireless networks

- only some nodes can communicate directly with each other
- how to route messages to nodes that cannot be reached directly?
- common approach is to create a hierarchy

Goal. are there *k* cluster heads that do not interfere during simultaneous transmissions?

Similar to

Given. a set of potential locations for e.g. a Starbucks and connections if they interfere.

Goal. are there k locations that do not interfere?

Polynomial Time with a fixed parameter: O(n^k) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

 $O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S is an independent set
    if (S is an independent set)
        report S
    }
}
```

Check whether S is an independent set = O(k²). Number of k element subsets = $\binom{n}{k} = \frac{n (n-1) (n-2) L (n-k+1)}{k (k-1) (k-2) L (2) (1)} \le \frac{n^{k}}{k!}$ O(k² n^k / k!) = O(n^k). poly-time for k=17, but not practical

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← $
foreach subset S of nodes {
    check whether S is an independent set
    if (S is largest independent set seen so far)
        update S* ← S
    }
}
```

Advanced algorithms (using bounded search trees): O*(1.3803ⁿ) or even O*(1.2227ⁿ)

Properties

Transitivity.

If f is O(g) and g is O(h) then f is O(h). If f is $\Omega(g)$ and g is $\Omega(h)$ then f is $\Omega(h)$. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.

Additivity.

If f is O(h) and g is O(h) then f + g is O(h). If f is $\Omega(h)$ and g is $\Omega(h)$ then f + g is $\Omega(h)$. If f is $\Theta(h)$ and g is $\Theta(h)$ then f + g is $\Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomial. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(f(n))$ if $a_d > 0$.

Q. What is the simplest f(n)? (where simplest is the least number of terms)A.

```
Q. For every x > 0, log n is O(n^x)? (or n^x is O(\log n)?)
A.
```

Q. For every r > 1 and every d > 0 is r^n is $O(n^d)$? (or n^d is $O(r^n)$?) A.

Asymptotic Bounds for Some Common Functions

Polynomial. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(f(n))$ if $a_d > 0$.

Q. What is the simplest f(n)? (where simplest is the least number of terms) A. $f(n) = n^d$

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Q. For every x > 0, log n is $O(n^x)$? (or n^x is $O(\log n)$?) A.

Q. For every r > 1 and every d > 0 is r^n is $O(n^d)$? (or n^d is $O(r^n)$?) A.

n

Asymptotic Bounds for Some Common Functions

Polynomial. $a_0 + a_1n + ... + a_dn^d$ is $\Theta(f(n))$ if $a_d > 0$. Q. What is the simplest f(n)? A. $f(n) = n^d$

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Q. For every x > 0, log n is $O(n^x)$? (or n^x is $O(\log n)$?)

A. Yes. log grows slower than *every* polynomial.

Q. For every r > 1 and every d > 0 is r^n is $O(n^d)$? (or n^d is $O(r^n)$?) A.

Asymptotic Bounds for Some Common Functions

- Polynomial. $a_0 + a_1n + ... + a_dn^d$ is $\Theta(f(n))$ if $a_d > 0$. Q. What is the simplest f(n)?
- **A.** $f(n) = n^{d}$

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

- Q. For every x > 0, log n is $O(n^x)$? (or n^x is $O(\log n)$?)
- A. Yes. log grows slower than *every* polynomial.

Q. For every r > 1 and every d > 0 is r^n is $O(n^d)$? (or n^d is $O(r^n)$?) A. No. Every exponential grows faster than every polynomial.

Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0.

