### 2.2 Asymptotic Order of Growth

- definitions and notation (2.2)
- examples (2.4)
- properties (2.2)


## Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.
Ex: $\quad T(n)=32 n^{2}+17 n+32$.
Q. Is $T(n)$...
5) $O(n)$ ?

1) $O\left(n^{2}\right)$ ?
2) $\Omega\left(\mathrm{n}^{2}\right)$ ?
3) $\Omega\left(n^{3}\right)$ ?
4) $\Omega(\mathrm{n})$ ?
5) $O\left(n^{3}\right)$ ?
6) $\Theta\left(n^{2}\right)$ ?
. $\Theta(n)$ ? 9) $\Theta\left(n^{3}\right)$ ?
TUDelft

## Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.
Ex: $\quad T(n)=32 n^{2}+17 n+32$.
A.
$T(n)$ is $O\left(n^{2}\right), O\left(n^{3}\right), \Omega\left(n^{2}\right), \Omega(n)$, and $\Theta\left(n^{2}\right)$. $T(n)$ is not $O(n), \Omega\left(n^{3}\right), \Theta(n)$, or $\Theta\left(n^{3}\right)$.

## Notation

Slight abuse of notation. $T(n)=O(f(n))$.
Asymmetric:

$$
\begin{aligned}
& -f(n)=5 n^{3} ; g(n)=3 n^{2} \\
& -f(n)=O\left(n^{3}\right)=g(n) \\
& - \text { but } f(n) \neq g(n) .
\end{aligned}
$$

Better notation: $T(n) \in O(f(n))$.

## Notation

Slight abuse of notation. $T(n)=O(f(n))$.
Asymmetric:

$$
\begin{aligned}
& -f(n)=5 n^{3} ; g(n)=3 n^{2} \\
& -f(n)=O\left(n^{3}\right)=g(n) \\
& \text { - but } f(n) \neq g(n) .
\end{aligned}
$$

Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons. (Watch out!)
Q. What is wrong with this statement?

## Notation

Slight abuse of notation. $T(n)=O(f(n))$.
Asymmetric:

$$
\begin{aligned}
& -f(n)=5 n^{3} ; g(n)=3 n^{2} \\
& -f(n)=O\left(n^{3}\right)=g(n) \\
& - \text { but } f(n) \neq g(n) .
\end{aligned}
$$

Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons. (Watch out!)
Q. What is wrong with this statement?
A.

Statement doesn't "type-check": $\mathrm{O}(\mathrm{f}(\mathrm{n})$ ) is for upper bounds Use $\Omega$ for lower bounds.

### 2.4 A Survey of Common Running Times

## Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an array of length $n$ ? ( 1 min )
find the maximum value
insertion sort (p. 113 of Bailey)
merge sort (p.115-118 of Bailey)
find in a binary search tree (p.331-)

TUDelft

## Worst-case analysis

Q. What is the worst-case running time of the following algorithms on an array of length $n$ ? ( 1 min )
find the maximum value
O(n)
insertion sort (p. 113 of Bailey) $O\left(n^{2}\right)$
merge sort (p.115-118 of Bailey)
find in a binary search tree (p.331-)
$O(n \log n)$
$O(\log n)$

## Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of $n$ numbers $a_{11}, \ldots, a_{n}$.

```
max }\leftarrow\mp@subsup{a}{1}{
for i = 2 to n {
    if (a
        max }\leftarrow\mp@subsup{a}{i}{
}
```


## Linear Time: O(n)

Merge. Combine two sorted lists $A=a_{1}, a_{2}, \ldots, a_{n}$ with $B=b_{1}, b_{2}, \ldots, b_{n}$ into sorted whole.


```
i = 1, j = 1
while (both lists are nonempty) {
    if ( }\mp@subsup{a}{i}{}\leq\mp@subsup{b}{j}{})\mathrm{ ) append }\mp@subsup{a}{i}{}\mathrm{ to output list and increment i
    else append bj to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size $n$ takes $O(n)$ time.
Pf. After each comparison, the length of output list increases by 1.

## O(n $\log n$ ) Time

$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time. Arises in divide-and-conquer algorithms. also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n $\log n$ ) comparisons.

Largest empty interval. Given n time-stamps $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

## Quadratic Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Quadratic time. Enumerate all pairs of elements.
Closest pair of points. Given a list of $n$ points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}\right.$, $y_{n}$ ), find the pair that is closest.
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ solution. Try all pairs of points.

```
min}\leftarrow(\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{}\mp@subsup{)}{}{2
for i = 1 to n {
    for j = i+1 to n {
        d}\leftarrow(\mp@subsup{x}{i}{}-\mp@subsup{x}{j}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{i}{}-\mp@subsup{y}{j}{}\mp@subsup{)}{}{2}\quad\longleftarrow\mathrm{ don't need to
        if (d < min)
            min}\leftarrow
    }
}
```

Remark. $\Omega\left(\mathrm{n}^{2}\right)$ seems inevitable, but this is just an illusion.

## Cubic Time: $O\left(n^{3}\right)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given $n$ sets $S_{1}, \ldots, S_{n}$ each of which is a subset of $1,2, \ldots, n$, is there some pair of these which are disjoint?
$O\left(n^{3}\right)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set Si
    foreach other set S S {
        foreach element p of S }\mp@subsup{S}{i}{}
        determine whether p also belongs to }\mp@subsup{S}{j}{
        }
        if (no element of }\mp@subsup{S}{i}{}\mathrm{ belongs to }\mp@subsup{S}{j}{}\mathrm{ )
        report that }\mp@subsup{S}{i}{}\mathrm{ and }\mp@subsup{S}{j}{}\mathrm{ are disjoint
    }
}
```


## Routing in ad-hoc wireless networks

cluster heads

- only some nodes can communicate directly with each other
- how to route messages to nodes that cannot be reached directly?
- common approach is to create a hierarchy

Goal. are there $k$ cluster heads that do not interfere during simultaneous transmissions?


Similar to
Given. a set of potential locations for e.g. a Starbucks and connections if they interfere.
Goal. are there k locations that do not interfere?

## Polynomial Time with a fixed parameter: $O\left(n^{k}\right)$ Time

Independent set of size k . Given a graph, are there k nodes such that no two are joined by an edge?
$\mathrm{O}\left(\mathrm{n}^{k}\right)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S is an independent set
    if (S is an independent set)
        report S
    }
}
```

Check whether $S$ is an independent set $=O\left(k^{2}\right)$.
Number of $k$ element subsets $=\binom{n}{k}=\frac{n(n-1)(n-2) L(n-k+1)}{k(k-1)(k-2) L(2)(1)} \leq \frac{n^{k}}{k!}$
$O\left(k^{2} n^{k} / k!\right)=O\left(n^{k}\right)$.

## Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?
$\mathrm{O}\left(\mathrm{n}^{2} 2^{n}\right)$ solution. Enumerate all subsets.

```
S* \leftarrow\phi
foreach subset S of nodes {
    check whether S is an independent set
    if (S is largest independent set seen so far)
        update S* }\leftarrow
    }
}
```

Advanced algorithms (using bounded search trees):
$\mathrm{O}^{*}\left(1.3803^{n}\right)$ or even $\mathrm{O}^{*}\left(1.2227^{n}\right)$

## Properties

Transitivity.
If $f$ is $O(g)$ and $g$ is $O(h)$ then $f$ is $O(h)$.
If $f$ is $\Omega(\mathrm{g})$ and g is $\Omega(\mathrm{h})$ then f is $\Omega(\mathrm{h})$.
If $f$ is $\Theta(g)$ and $g$ is $\Theta(\mathrm{h})$ then $f$ is $\Theta(\mathrm{h})$.

Additivity.
If $f$ is $O(h)$ and $g$ is $O(h)$ then $f+g$ is $O(h)$.
If $f$ is $\Omega(\mathrm{h})$ and g is $\Omega(\mathrm{h})$ then $\mathrm{f}+\mathrm{g}$ is $\Omega(\mathrm{h})$.
If $f$ is $\Theta(h)$ and $g$ is $\Theta(h)$ then $f+g$ is $\Theta(h)$.

TUDelft

## Asymptotic Bounds for Some Common Functions

Polynomial. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta(f(n))$ if $a_{d}>0$.
Q. What is the simplest $f(n)$ ? (where simplest is the least number of terms)
A.
Q. For every $x>0, \log n$ is $O\left(n^{x}\right)$ ? (or $n^{x}$ is $O(\log n) ?$ )
A.
Q. For every $r>1$ and every $d>0$ is $r^{n}$ is $O\left(n^{d}\right)$ ? (or $n^{d}$ is $O\left(r^{n}\right)$ ?)
A.

## Asymptotic Bounds for Some Common Functions

Polynomial. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta(f(n))$ if $a_{d}>0$.
Q. What is the simplest $f(n)$ ? (where simplest is the least number of terms)
A. $f(n)=n^{d}$

Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size $n$.
Q. For every $x>0, \log n$ is $O\left(n^{x}\right)$ ? (or $n^{x}$ is $O(\log n)$ ?)
A.
Q. For every $r>1$ and every $d>0$ is $r^{n}$ is $O\left(n^{d}\right)$ ? (or $n^{d}$ is $O\left(r^{n}\right)$ ?)
A.


## Asymptotic Bounds for Some Common Functions

Polynomial. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta(f(n))$ if $a_{d}>0$.
Q. What is the simplest $f(n)$ ?
A. $f(n)=n^{d}$

Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size $n$.
Q. For every $x>0, \log n$ is $O\left(n^{x}\right)$ ? (or $n^{x}$ is $O(\log n) ?$ )
A. Yes. log grows slower than every polynomial.
Q. For every $r>1$ and every $d>0$ is $r^{n}$ is $O\left(n^{d}\right)$ ? (or $n^{d}$ is $O\left(r^{n}\right)$ ?)
A.

## Asymptotic Bounds for Some Common Functions

Polynomial. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta(f(n))$ if $a_{d}>0$.
Q. What is the simplest $f(n)$ ?
A. $f(n)=n^{d}$

Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size $n$.
Q. For every $x>0, \log n$ is $O\left(n^{x}\right)$ ? (or $n^{x}$ is $O(\log n) ?$ )
A. Yes. $\log$ grows slower than every polynomial.
Q. For every $r>1$ and every $d>0$ is $r^{n}$ is $O\left(n^{d}\right)$ ? (or $n^{d}$ is $O\left(r^{n}\right)$ ?)
A. No. Every exponential grows faster than every polynomial.

Logarithms. $\mathrm{O}\left(\log _{\mathrm{a}} \mathrm{n}\right)=\mathrm{O}\left(\log _{\mathrm{b}} \mathrm{n}\right)$ for any constants $\mathrm{a}, \mathrm{b}>0$.

