3.1 Graphs: Basic Definitions and Applications

From trees to graphs

Q. How many edges does a tree with n nodes (internal+leaves) have?

From trees to graphs

Q. How many edges does a tree with n nodes (internal+leaves) have?
A. n-1

World Wide Web

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another.

TUDelft

Why Graphs?

Graph	Nodes	Edges
transportation	street intersections	highways
communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
social	people	relationships
food web	species	predator-prey
software systems	functions	function calls
scheduling	tasks	precedence constraints
circuits	gates	wires

TUODeft

Undirected Graphs

Undirected graph. G = (V, E)

- $\mathrm{V}=$ set of nodes (=vertices). ("knopen")
- $\mathrm{E}=$ set of edges between pairs of nodes. ("kanten")
- Captures pairwise relationship between objects.
- Graph size parameters: $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$.

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8\} \\
& E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,7-8,4-5,5-6\} \\
& n=8 \\
& m=11
\end{aligned}
$$

Q.How to implement a graph? Which datastructure to use? (1 min.)

- How much space do you need?
- How much time to check whether node 2 and 4 neighbors?
- How much time to list all edges?

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $\mathrm{A}_{\mathrm{uv}}=1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta\left(\mathrm{n}^{2}\right)$ time.
Q. How is this edge between 2 and 4 represented in the matrix?

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

TUDelft

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
degree $=$ number of neighbors of u
- Space proportional to $m+n$.
- Checking if (u, v) is an edge takes $O(\operatorname{deg}(u))$ time.
- Identifying all edges takes $\Theta(m+n)$ time.
Q. How is this edge between 2 and 4 represented in the adjacency list?

Paths and Connectivity

Def. A path in an undirected graph $G=(V, E)$ is a sequence P of nodes v_{1}, $\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}$ with the property that each consecutive pair $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$ is joined by an edge in E.

Def. A path is simple if all nodes are distinct.
Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Q. Is 1-3-8-7-3-5 a path?
Q. Is it a simple path?
Q. Is this graph connected?

Cycles

Def. A cycle is a path $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ in which $v_{1}=v_{k}, k>2$, and the first $k-1$ nodes are all distinct.

cycle $C=1-2-4-5-3-1$

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

