3.1 Graphs: Basic Definitions and Applications

From trees to graphs

Q. How many edges does a tree with n nodes (internal+leaves) have?

From trees to graphs

Q. How many edges does a tree with n nodes (internal+leaves) have? A. n-1

World Wide Web

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another.

http://www.kurdishworld.com/projects/google/

Why Graphs?

Graph	Nodes	Edges
transportation	street intersections	highways
communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
social	people	relationships
food web	species	predator-prey
software systems	functions	function calls
scheduling	tasks	precedence constraints
circuits	gates	wires

Undirected Graphs

Undirected graph. G = (V, E)

- V = set of nodes (=vertices). ("knopen")
- E = set of edges between pairs of nodes. ("kanten")
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Q.How to implement a graph? Which datastructure to use? (1 min.)

- How much space do you need?
- How much time to check whether node 2 and 4 neighbors?
- How much time to list all edges?

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes Θ(n²) time.

Q. How is this edge between 2 and 4 represented in the matrix?

Graph Representation: Adjacency List

degree = number of neighbors of u

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.
- Q. How is this edge between 2 and 4 represented in the adjacency list?

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes v_1 , v_2 , ..., v_{k-1} , v_k with the property that each consecutive pair v_i , v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Q. Is 1-3-8-7-3-5 a path?

Q. Is it a simple path?

Q. Is this graph connected?

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle *C* = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

the same tree, rooted at 1

a tree

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

