/.5 Network Flow: Bipartite Matching

= (Bipartite) Matching Problem
= Translation to Network Flow
= Perfect Matching



Matching

Matching.
. Input: undirected graph G = (V, E).
. M c E is a matching if each node appears in at most one edge in M.
. Max matching: find a max cardinality matching.

Q. Given n nodes, m edges, what is upper bound on cardinality of M?

]
TUDelft

2



Matching

Matching.
. Input: undirected graph G = (V, E).
. M c E is a matching if each node appears in at most one edge in M.
. Max matching: find a max cardinality matching.

Q. Given n nodes, m edges, what is upper bound on cardinality of M?

A. upper bound is min(n/2, m)
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Matching Applications

Applications

= assignment of jobs to machines

= assignment of items to people

= assignment of lights to light switches (exercise 7.6)
= assignment of injured to hospitals (exercise 7.9)

]
TUDelft

4



Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph G = (L U R, E).
. M c E is a matching if each node appears in at most one edge in M.
Max matching: find a max cardinality matching.
Q What is the cardinality of the max matching? (3,4,5)
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@ @) matching
1-2', 3-1', 4-5'
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Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph G = (L U R, E).
. M c E is a matching if each node appears in at most one edge in M.
. Max matching: find a max cardinality matching.

Q. What is the difference from the stable matching problem?

A. Stable matching: all connected, |L|=|R|, with preference lists

max matching
1-1' 2-2', 3-3' 4-4'




Bipartite Matching

Q. Formulate max bipartite matching as a max flow problem? (2 min)
1.Do you want the max matching to be the max flow or the min cut?
2.Which nodes should be s and t? (Existing or new?)

3.Do we need more edges, what should be the direction?

4.What should be the capacities?




Bipartite Matching

Max flow formulation.
. Createdigraph G'=(LURuU{s, t}, E").
. Direct all edges from L to R, and assign unit (or infinite) capacity.
. Add source s, and unit capacity edges from s to each node in L.
. Add sink t, and unit capacity edges from each node in R to t.
Q. When do we have a max cardinality matching?




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf.
Q. How to prove this equality?




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf.

Q. How to prove this equality?

A. Prove < and > separately.




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf. <

. Given max matching M in G of cardinality k.

. Consider flow f ...
Q. Which flow to consider?

. value of f is < value of max flow in G" -

©




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf. <
. Given max matching M in G of cardinality k.
. Consider flow f that sends 1 unit along k paths, one for each (I,r) in M:
path is from s to |, from | to r, and from r to t.
. fis a flow, and has value k.
. value of f is < value of max flow in G'. -




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf. >
. Let f be a max flow in G' of value k.

Q. Which matching M to consider?

~IM| =k -




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf. >
. Let f be a max flow in G' of value k.
. Integrality theorem = Kk is integral and thus f is 0-1.
. Consider M = set of edges from L to R with f(e) = 1.
— each node in L and R participates in at most one edge in M (because
capacity of either all incoming or outgoing edges is at most 1)
- |M| = k = v(f): consider flow over cut (Lu s, Ru t)

This proof can be found on page 369.



Perfect Matching

Def. A matching M c E is perfect if each node appears in exactly one edge
in M.

Q". When does a bipartite graph have a perfect matching? And can we
indicate where the problem lies if not?

Structure of bipartite graphs with perfect matchings.
. Clearly we must have |L| = [R].
. What other conditions are necessary? (i.e., perfect m. = condition)
. What conditions are sufficient? (i.e., condition = perfect m.)
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Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Q. How many neighbors should each node at least have for a perfect
matching?

A. At least one.

Q. Generalize this to subsets of nodes S.
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Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L U R, E) has a perfect matching,
then |[N(S)| > |S] for all subsets S < L. (i.e., necessary condition)
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:
S={2,45}
N(s)={2',5"}.
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Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935]
Let G = (L U R, E) be a bipartite graph with |[L| = |R].

G has a perfect matching iff [N(S)| > |S| for all subsets S < L.

Pf. = This was the previous observation.
Pf. «< By contrapositive, so to prove:

G has no perfect matching = there is a set S < L for which [N(S)| < |S|
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Proof of Marriage Theorem

Pf. « By contrapositive. Suppose G does not have a perfect matching.
Q. Which set S < L to choose?

. Then |[N(S)| < |S]. -
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Proof of Marriage Theorem

Pf. « By contrapositive. Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G
. DefineL,=LnA Lg=LnB, Ry =RnNA.

. Choose S =L, . Then [N(S)| < |S]. -

flOW |n G' 1 _»K
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Proof of Marriage Theorem

1 Define:

residual graph _
A/& , min cut (A,B)
La =LA

L,=L~B
R,=RNA

Show:
IN(La) | <|Lal

L,={2, 4,5}
Lg= {1, 3}
R,={2",5}
N(L.) ={2",5%}
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Proof of Marriage Theorem

h 1 Define:

min cut (A,B)
La =LA
Ll =LNB
Ry=RnNA

| —
1 \K/ : n 1 ! Show:
Mlﬂ/ 1 T IN(La) | <L,
R

residual grap

Prop. No L-R edge (l,r) in min cut (A,B) with | in A and r in B.

Pf.
L.={2,4,5
If there is no flow over (l,r), then r in A. A=t )
LB = {11 3}

If there is a flow via (l,r), then | is not directly reachable from o
s in residual graph, so | is only in A if r in A. Ry={2", 5}
N(L.)={2",5}

NB. This Proposition trivially holds if L-R edges have capacity o
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Proof of Marriage Theorem

Pf. « By contrapositive. Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G
. DefineL,=LnA, Lg=LnB, R, =RnA.

- SOIN(Lp)|[ < .= o< o= | Lal.
. Choose S =L, . Then [N(S)| < |S]. -

L,={2, 4,5}
: Lg= {1, 3}
Ra= {2',5}
1 N(L,) = (2", 5')
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Proof of Marriage Theorem

Pf. « By contrapositive. Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G'.
. DefineL,=LnA, Lg=LnB, R, =RnA.

. No L-R edges from A to B in min cut: cap(A, B) = |Lg| + | Ral.

. No L-R edges from A to B in min cut: N(L,) < R,.

. SO IN(Ly))I < [Ry| = cap(A, B)- | Lg| ... < |LI-ILgl = |Lal.
. Choose S =L, . Then [N(S)| < |S]. -

L,={2, 4,5}
: Lg= {1, 3}
Ra= {2',5}
1 N(L,) = (2", 5')
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Proof of Marriage Theorem

Pf. « By contrapositive. Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G'.
. DefineL,=LnA, Lg=LnB, R, =RnA.
. Not perfect, so v(f) < |L|, so by max-flow min-cut, cap(A, B) < | L].
. No L-R edges from A to B in min cut: cap(A, B) = |Lg| + [ Ry ].
. No L-R edges from A to B in min cut: N(L,) < R,.
. SO IN(Lp))I < [Rp| = cap(A, B)- | Lg| < |LI-|Lgl = [Lal.
. Choose S =L, . Then [N(S)| < |S]. -

L,={2, 4,5}
: Lg= {1, 3}
Ra= {2',5}
1 N(L,) = (2", 5')

This proof can be found
on pages 372-373. 25




Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935]
Let G = (L U R, E) be a bipartite graph with |[L| = |R].
G has a perfect matching iff [N(S)| > |S| for all subsets S < L.

So if we cannot find perfect matching, we can now also explain why this is.
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Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
. Generic augmenting path: O(mnc*) = O(mn).
. Capacity scaling: O(m?log c*) = O(m?).
. Shortest augmenting path: O(m nl/2),

Non-bipartite matching.

. Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]

. Blossom algorithm: O(n%). [Edmonds 1965]

. Best known: O(m nl/2), [Micali-Vazirani 1980]

]
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Exam exercise (7.9)

Q. Can n persons be distributed over k hospitals s.t. e
. nobody travels more than half an hour, and ° Lnj:;;alperson
. each hospital doesn't get more than [ n/k]| people? 1 half an hour drive

. \
In this case: n = 31, k =4, so|n/k|=8 et
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