### 7.5 Network Flow: Bipartite Matching

- (Bipartite) Matching Problem
- Translation to Network Flow
- Perfect Matching


## Matching

## Matching.

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in $M$.
- Max matching: find a max cardinality matching.
Q. Given n nodes, m edges, what is upper bound on cardinality of M ?



## Matching

## Matching.

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in $M$.
- Max matching: find a max cardinality matching.
Q. Given $n$ nodes, $m$ edges, what is upper bound on cardinality of M ?
A. upper bound is $\min (n / 2, m)$



## Matching Applications

Applications

- assignment of jobs to machines
- assignment of items to people
- assignment of lights to light switches (exercise 7.6)
- assignment of injured to hospitals (exercise 7.9)


## Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph $G=(L \cup R, E)$.

- $M \subseteq E$ is a matching if each node appears in at most one edge in $M$.
- Max matching: find a max cardinality matching.
Q. What is the cardinality of the max matching? $(3,4,5)$



## Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G=(L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in $M$.
- Max matching: find a max cardinality matching.
Q. What is the difference from the stable matching problem?
A. Stable matching: all connected, $|\mathrm{L}|=|\mathrm{R}|$, with preference lists



## Bipartite Matching

Q. Formulate max bipartite matching as a max flow problem? (2 min) 1.Do you want the max matching to be the max flow or the min cut?
2.Which nodes should be sand t ? (Existing or new?)
3.Do we need more edges, what should be the direction?
4.What should be the capacities?


## Bipartite Matching

Max flow formulation.

- Create digraph $\mathrm{G}^{\prime}=\left(\mathrm{L} \cup \mathrm{R} \cup\{\mathrm{s}, \mathrm{t}\}, \mathrm{E}^{\prime}\right)$.
- Direct all edges from $L$ to $R$, and assign unit (or infinite) capacity.
- Add source $s$, and unit capacity edges from $s$ to each node in $L$.
- Add sink $t$, and unit capacity edges from each node in R to t .
Q. When do we have a max cardinality matching?



## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$. Pf.
Q. How to prove this equality?


## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$. Pf.
Q. How to prove this equality?
A. Prove $\leq$ and $\geq$ separately.


## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$.
Pf. $\leq$

- Given max matching M in G of cardinality k .
- Consider flow f ...
Q. Which flow to consider?
. value of $f$ is $\leq$ value of max flow in $\mathrm{G}^{\prime}$.



## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$.
Pf. $\leq$

- Given max matching M in G of cardinality k .
- Consider flow $f$ that sends 1 unit along $k$ paths, one for each $(1, r)$ in $M$ : path is from $s$ to $l$, from $I$ to $r$, and from $r$ to $t$.
. $f$ is a flow, and has value $k$.
- value of $f$ is $\leq$ value of max flow in $\mathrm{G}^{\prime}$. .



## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$. Pf. $\geq$
. Let f be a max flow in $\mathrm{G}^{\prime}$ of value k .
Q. Which matching M to consider?

$$
\begin{aligned}
& -\ldots \\
& -|M|=k .
\end{aligned}
$$



## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in $\mathrm{G}=$ value of max flow in $\mathrm{G}^{\prime}$.
Pf. $\geq$

- Let $f$ be a max flow in $\mathrm{G}^{\prime}$ of value k .
- Integrality theorem $\Rightarrow k$ is integral and thus $f$ is $0-1$.
- Consider $\mathrm{M}=$ set of edges from L to R with $f(\mathrm{e})=1$.
- each node in $L$ and $R$ participates in at most one edge in $M$ (because capacity of either all incoming or outgoing edges is at most 1)
$-|M|=k=v(f)$ : consider flow over cut $(L \cup s, R \cup t)$.



## Perfect Matching

Def. A matching $\mathrm{M} \subseteq \mathrm{E}$ is perfect if each node appears in exactly one edge in M.

Q*. When does a bipartite graph have a perfect matching? And can we indicate where the problem lies if not?

Structure of bipartite graphs with perfect matchings.
. Clearly we must have $|\mathrm{L}|=|\mathrm{R}|$.
. What other conditions are necessary? (i.e., perfect $\mathrm{m} . \Rightarrow$ condition)

- What conditions are sufficient? (i.e., condition $\Rightarrow$ perfect m.)


## Perfect Matching

Notation. Let $S$ be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S .
Q. How many neighbors should each node at least have for a perfect matching?
A. At least one.
Q. Generalize this to subsets of nodes $S$.

## Perfect Matching

Notation. Let S be a subset of nodes, and let $\mathrm{N}(\mathrm{S})$ be the set of nodes adjacent to nodes in S .

Observation. If a bipartite graph $G=(L \cup R, E)$ has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq$ L. (i.e., necessary condition) Pf. Each node in $S$ has to be matched to a different node in $N(S)$.


No perfect matching:
$S=\{2,4,5\}$
$N(S)=\left\{2^{\prime}, 5^{\prime}\right\}$.

R

## Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935]
Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$.
G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Pf. $\Rightarrow$ This was the previous observation.
Pf. $\Leftarrow$ By contrapositive, so to prove:
$G$ has no perfect matching $\Rightarrow$ there is a set $S \subseteq L$ for which $|N(S)|<|S|$

## Proof of Marriage Theorem

Pf. $\Leftarrow$ By contrapositive. Suppose $G$ does not have a perfect matching.
Q. Which set $\mathrm{S} \subseteq \mathrm{L}$ to choose?

- Then $|\mathrm{N}(\mathrm{S})|<|S| . \cdot$



## Proof of Marriage Theorem

Pf. $\Leftarrow$ By contrapositive. Suppose $G$ does not have a perfect matching.

- Formulate as a max flow problem and let $(A, B)$ be min cut in $\mathrm{G}^{\prime}$.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
- Choose $\mathrm{S}=\mathrm{L}_{\mathrm{A}}$. Then $|\mathrm{N}(\mathrm{S})|<|\mathrm{S}|$. .



## Proof of Marriage Theorem



Define:
min cut (A,B)
$L_{A}=L \cap A$
$L_{B}=L \cap B$
$\mathrm{R}_{\mathrm{A}}=\mathrm{R} \cap \mathrm{A}$
Show:
$\left|N\left(L_{A}\right)\right|<\left|L_{A}\right|$


$$
\begin{aligned}
& L_{A}=\{2,4,5\} \\
& L_{B}=\{1,3\} \\
& R_{A}=\left\{2^{\prime}, 5^{\prime}\right\} \\
& N\left(L_{A}\right)=\left\{2^{\prime}, 5^{\prime}\right\}
\end{aligned}
$$

## Proof of Marriage Theorem



Define:
min cut (A,B)
$L_{A}=L \cap A$
$L_{B}=L \cap B$
$\mathrm{R}_{\mathrm{A}}=\mathrm{R} \cap \mathrm{A}$
Show:
$\left|N\left(L_{A}\right)\right|<\left|L_{A}\right|$

Prop. No L-R edge $(I, r)$ in min cut $(A, B)$ with $I$ in $A$ and $r$ in $B$.
Pf.
If there is no flow over $(1, r)$, then $r$ in $A$.
If there is a flow via $(I, r)$, then $I$ is not directly reachable from $s$ in residual graph, so $l$ is only in $A$ if $r$ in $A$.
$L_{A}=\{2,4,5\}$
$L_{B}=\{1,3\}$
$R_{A}=\left\{2^{\prime}, 5^{\prime}\right\}$
$N\left(L_{A}\right)=\left\{2^{\prime}, 5^{\prime}\right\}$

NB. This Proposition trivially holds if L-R edges have capacity $\infty$

## Proof of Marriage Theorem

Pf. $\Leftarrow$ By contrapositive. Suppose $G$ does not have a perfect matching.

- Formulate as a max flow problem and let $(A, B)$ be min cut in $\mathrm{G}^{\prime}$.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
- So $\left|N\left(L_{A}\right)\right| \leq \ldots=\ldots<\ldots=\left|L_{A}\right|$.
- Choose $S=L_{A}$. Then $|N(S)|<|S|$.



## Proof of Marriage Theorem

Pf. $\Leftarrow$ By contrapositive. Suppose $G$ does not have a perfect matching.

- Formulate as a max flow problem and let $(A, B)$ be min cut in $\mathrm{G}^{\prime}$.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
- No L-R edges from $A$ to $B$ in min cut: $\operatorname{cap}(A, B)=\left|L_{B}\right|+\left|R_{A}\right|$.
- No L-R edges from $A$ to $B$ in min cut: $N\left(L_{A}\right) \subseteq R_{A}$.
- So $\left|N\left(L_{A}\right)\right| \leq\left|R_{A}\right|=\operatorname{cap}(A, B)-\left|L_{B}\right| \ldots<|L|-\left|L_{B}\right|=\left|L_{A}\right|$.
- Choose $S=L_{A}$. Then $|N(S)|<|S|$. .



## Proof of Marriage Theorem

Pf. $\Leftarrow$ By contrapositive. Suppose $G$ does not have a perfect matching.

- Formulate as a max flow problem and let $(A, B)$ be min cut in $\mathrm{G}^{\prime}$.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
- Not perfect, so $v(f)<|L|$, so by max-flow min-cut, cap $(A, B)<|L|$.
. No L-R edges from $A$ to $B$ in min cut: $\operatorname{cap}(A, B)=\left|L_{B}\right|+\left|R_{A}\right|$.
- No $L-R$ edges from $A$ to $B$ in min cut: $N\left(L_{A}\right) \subseteq R_{A}$.
- So $\left|N\left(L_{A}\right)\right| \leq\left|R_{A}\right|=\operatorname{cap}(A, B)-\left|L_{B}\right|<|L|-\left|L_{B}\right|=\left|L_{A}\right|$.
- Choose $S=L_{A}$. Then $|N(S)|<|S|$. .



## Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935]
Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$.
G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

So if we cannot find perfect matching, we can now also explain why this is.

## Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O\left(\mathrm{mnc}^{*}\right)=O(\mathrm{mn})$.
- Capacity scaling: $O\left(m^{2} \log c^{*}\right)=O\left(m^{2}\right)$.
. Shortest augmenting path: $O\left(\mathrm{~m} \mathrm{n}^{1 / 2}\right)$.

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: O( $\mathrm{n}^{4}$ ). [Edmonds 1965]
- Best known: O(m n ${ }^{1 / 2}$ ). [Micali-Vazirani 1980]


## Exam exercise (7.9)

Q. Can $n$ persons be distributed over $k$ hospitals s.t.

- nobody travels more than half an hour, and
- each hospital doesn't get more than $\lceil\mathrm{n} / \mathrm{k}\rceil$ people?
(In this case: $n=31, k=4$, so $\lceil n / k\rceil=8$.)
- injured person
- hospital
half an hour drive

TUDelft

