
7.3  Choosing Good Augmenting Paths 



2 

Ford-Fulkerson:  Exponential Number of Augmentations 

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size? 

 

 

 

m, n, and log c* 



3 

Ford-Fulkerson:  Exponential Number of Augmentations 

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size? 

 

 

A.   No.  If max capacity is c*, then algorithm can take nc* iterations.   

s 

1 

2 

t 

c* 

c* 

0 0 

0 0 

0 

c* 

c* 

1 s 

1 

2 

t 1 

0 0 

0 0 

0 X 1 

c* 

c* 

X 

X 

X 

1 

1 

1 

X 

X 

1 

1 X 

X 

X 

1 

0 

1 

m, n, and log c* 

c* 

c* 



4 

Choosing Good Augmenting Paths 

Use care when selecting augmenting paths. 

 Some choices lead to exponential algorithms. 

 Clever choices lead to polynomial algorithms. 

 If capacities are irrational, algorithm not guaranteed to terminate! 

 

 

Goal:  choose augmenting paths so that: 

 Can find augmenting paths efficiently. 

 Few iterations. 

 

Q. How to choose “good” augmenting paths? 

s 

1 

2 

t 

c* 

c* 

0 0 

0 
0 

0 

c* 

c* 

1 



5 

Choosing Good Augmenting Paths 

Use care when selecting augmenting paths. 

 Some choices lead to exponential algorithms. 

 Clever choices lead to polynomial algorithms. 

 If capacities are irrational, algorithm not guaranteed to terminate! 

 

 

Goal:  choose augmenting paths so that: 

 Can find augmenting paths efficiently. 

 Few iterations. 

 

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970] 

 Max bottleneck capacity. 

 Sufficiently large bottleneck capacity. 

 Fewest number of edges. 



Capacity Scaling 

Intuition.  Choosing path with sufficiently high bottleneck capacity 

 Maintain scaling parameter . 

 Find flow in the subgraph Gf () of the residual graph consisting of only 

arcs with capacity at least . 

110 

s 

4 

2 

t 
 1 

170 

102 

122 

Gf 

110 

s 

4 

2 

t 

170 

102 

122 

Gf (64) 



7 

Capacity Scaling 

Scaling-Max-Flow(G, s, t, c) { 

   foreach e  E  f(e)  0 

     smallest power of 2 greater than or equal to c* 

   Gf  residual graph 

 

   while (  1) { 

      Gf()  -residual graph 

      while (there exists augmenting path P in Gf()) { 

         f  augment(f, c, P) 

         update Gf() 

      } 

         / 2  

   } 

   return f 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  Why is this algorithm correct? (Why does it terminates with a max 

flow?) 



8 

Capacity Scaling:  Correctness 

Assumption.  All edge capacities are integers between 1 and c*.  

 

Integrality invariant.  All flow and residual capacity values are integral. 

 

Q.  Why is this algorithm correct? (Why does it terminates with a max flow?) 



9 

Capacity Scaling:  Correctness 

Assumption.  All edge capacities are integers between 1 and c*.  

 

Integrality invariant.  All flow and residual capacity values are integral. 

 

Correctness.  If the algorithm terminates, then f is a max flow. 

Pf. 

 By integrality invariant, when  = 1    Gf()  = Gf. 

 Upon termination of  = 1 phase, there are no augmenting paths.  ▪ 

 



10 

Capacity Scaling: Running Time 

Scaling-Max-Flow(G, s, t, c) { 

   foreach e  E  f(e)  0 

     smallest power of 2 greater than or equal to c* 

   Gf  residual graph 

 

   while (  1) { 

      Gf()  -residual graph 

      while (there exists augmenting path P in Gf()) { 

         f  augment(f, c, P) 

         update Gf() 

      } 

         / 2  

   } 

   return f 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  How many scaling phases? (= the outer loop) 

Q.  How many augmentations per scaling phase? 



11 

Capacity Scaling: Running Time 

Q.  How many scaling phases? (= the outer loop) 

A.  The outer while loop repeats 1 + log2 c* times. 

Pf.  Initially c*   < 2c*.   decreases by a factor of 2 each iteration. ▪ 

 

Q.  How many augmentations per scaling phase? 

A.  ? 

Q. How much is an increase in flow for one augmentation in a -phase? 

A. Each augmentation in a -phase increases v(f’) by at least . 

 

Q. What is the maximum increase in flow in a whole -phase? 

A. Previous phase with 2 “missed” less than 2 for each edge, so maximum 

increase at most m2. 

So at most m2/ = 2m augmentations per scaling phase.  

 

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log c*) 

augmentations.  It can be implemented to run in O(m2 log c*) time.   


