
7.3  Choosing Good Augmenting Paths 



2 

Ford-Fulkerson:  Exponential Number of Augmentations 

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size? 

 

 

 

m, n, and log c* 



3 

Ford-Fulkerson:  Exponential Number of Augmentations 

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size? 

 

 

A.   No.  If max capacity is c*, then algorithm can take nc* iterations.   

s 

1 

2 

t 

c* 

c* 

0 0 

0 0 

0 

c* 

c* 

1 s 

1 

2 

t 1 

0 0 

0 0 

0 X 1 

c* 

c* 

X 

X 

X 

1 

1 

1 

X 

X 

1 

1 X 

X 

X 

1 

0 

1 

m, n, and log c* 

c* 

c* 



4 

Choosing Good Augmenting Paths 

Use care when selecting augmenting paths. 

 Some choices lead to exponential algorithms. 

 Clever choices lead to polynomial algorithms. 

 If capacities are irrational, algorithm not guaranteed to terminate! 

 

 

Goal:  choose augmenting paths so that: 

 Can find augmenting paths efficiently. 

 Few iterations. 

 

Q. How to choose “good” augmenting paths? 

s 

1 

2 

t 

c* 

c* 

0 0 

0 
0 

0 

c* 

c* 

1 



5 

Choosing Good Augmenting Paths 

Use care when selecting augmenting paths. 

 Some choices lead to exponential algorithms. 

 Clever choices lead to polynomial algorithms. 

 If capacities are irrational, algorithm not guaranteed to terminate! 

 

 

Goal:  choose augmenting paths so that: 

 Can find augmenting paths efficiently. 

 Few iterations. 

 

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970] 

 Max bottleneck capacity. 

 Sufficiently large bottleneck capacity. 

 Fewest number of edges. 



Capacity Scaling 

Intuition.  Choosing path with sufficiently high bottleneck capacity 

 Maintain scaling parameter . 

 Find flow in the subgraph Gf () of the residual graph consisting of only 

arcs with capacity at least . 

110 

s 

4 

2 

t 
 1 

170 

102 

122 

Gf 

110 

s 

4 

2 

t 

170 

102 

122 

Gf (64) 



7 

Capacity Scaling 

Scaling-Max-Flow(G, s, t, c) { 

   foreach e  E  f(e)  0 

     smallest power of 2 greater than or equal to c* 

   Gf  residual graph 

 

   while (  1) { 

      Gf()  -residual graph 

      while (there exists augmenting path P in Gf()) { 

         f  augment(f, c, P) 

         update Gf() 

      } 

         / 2  

   } 

   return f 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  Why is this algorithm correct? (Why does it terminates with a max 

flow?) 



8 

Capacity Scaling:  Correctness 

Assumption.  All edge capacities are integers between 1 and c*.  

 

Integrality invariant.  All flow and residual capacity values are integral. 

 

Q.  Why is this algorithm correct? (Why does it terminates with a max flow?) 



9 

Capacity Scaling:  Correctness 

Assumption.  All edge capacities are integers between 1 and c*.  

 

Integrality invariant.  All flow and residual capacity values are integral. 

 

Correctness.  If the algorithm terminates, then f is a max flow. 

Pf. 

 By integrality invariant, when  = 1    Gf()  = Gf. 

 Upon termination of  = 1 phase, there are no augmenting paths.  ▪ 

 



10 

Capacity Scaling: Running Time 

Scaling-Max-Flow(G, s, t, c) { 

   foreach e  E  f(e)  0 

     smallest power of 2 greater than or equal to c* 

   Gf  residual graph 

 

   while (  1) { 

      Gf()  -residual graph 

      while (there exists augmenting path P in Gf()) { 

         f  augment(f, c, P) 

         update Gf() 

      } 

         / 2  

   } 

   return f 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  How many scaling phases? (= the outer loop) 

Q.  How many augmentations per scaling phase? 



11 

Capacity Scaling: Running Time 

Q.  How many scaling phases? (= the outer loop) 

A.  The outer while loop repeats 1 + log2 c* times. 

Pf.  Initially c*   < 2c*.   decreases by a factor of 2 each iteration. ▪ 

 

Q.  How many augmentations per scaling phase? 

A.  ? 

Q. How much is an increase in flow for one augmentation in a -phase? 

A. Each augmentation in a -phase increases v(f’) by at least . 

 

Q. What is the maximum increase in flow in a whole -phase? 

A. Previous phase with 2 “missed” less than 2 for each edge, so maximum 

increase at most m2. 

So at most m2/ = 2m augmentations per scaling phase.  

 

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log c*) 

augmentations.  It can be implemented to run in O(m2 log c*) time.   


