
5.4  Closest Pair of Points 
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Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them. 

 

Fundamental geometric primitive. 

 Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control. 

 Special case of nearest neighbor, Euclidean MST, Voronoi. 

 

 

Q.  How much comparisons do we need in a brute-force method? 

 

 

Q.  How much comparisons do we need if points are on a line? 

 

 

fast closest pair inspired fast algorithms for these problems 
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Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them. 

 

Fundamental geometric primitive. 

 Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control. 

 Special case of nearest neighbor, Euclidean MST, Voronoi. 

 

 

Q.  How much comparisons do we need in a brute-force method? 

A.  Check all pairs of points p and q with (n2) comparisons. 

 

Q.  How much comparisons do we need if points are on a line? 

A.  O(n log n): easy if points are on a line (or O(n) if already sorted). 

 

Assumption.  No two points have same x coordinate. 

to make presentation cleaner 

fast closest pair inspired fast algorithms for these problems 
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Closest Pair of Points:  First Attempt 

Q.  How would a divide & conquer approach look like? 
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Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 
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Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 

Obstacle.  Impossible to ensure n/4 points in each piece. 
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Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 

 

L 
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Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

12 

21 

L 
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Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

 Combine?:  find closest pair with one point on each side. 

 Return best of 3 solutions. 

 

12 

21 
8 

L 
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Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

 Combine:  find closest pair with one point on each side. 

 Return best of 3 solutions. 

 

12 

21 
8 

L 

seems like (n2)  
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Closest Pair of Points 

Q. To combine, do we need to consider all points on the left and all points 

on the right of L? 

12 

21 
8 

L 
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Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

12 

21 

 = min(12, 21) 

L 
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Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

12 

21 

 

L 

 = min(12, 21) 
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 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

 Sort points in 2-strip by their y coordinate. 

Q. Do we need to consider all points in this strip? 

L 

 = min(12, 21) 
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 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

 Sort points in 2-strip by their y coordinate. 

 Only check distances of those within 11 positions in sorted list! 

L 

 = min(12, 21) 
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Closest Pair of Points 

Def.  Let si be the point in the 2-strip, with 

the ith smallest y-coordinate. 

 

Claim.  If |i – j| > 11, then the distance between 

si and sj is at least . 

Pf. 

 No two points lie in same ½-by-½ box. 

 Two points at least 2 rows apart 

have distance   2(½).   

 Only consider points within 0, 1, or 2 rows. ▪ 

 

 

Fact.  Still true if we replace 11 with 7. 

Fact.  Or even less if we consider left and right  

 columns separately (e.g. 6). 
 

27 

29 

31 

28 

26 25 

 

½  2 rows 

½ 

½ 
39 

i 

j 
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Closest Pair Algorithm 

Closest-Pair(p1, …, pn) { 

   if n = 1  

 return infinity (MAXINT) 

 

   Compute separation line L such that half the 

points 

   are on one side and half on the other side. 

 

   1 = Closest-Pair(left half) 

   2 = Closest-Pair(right half) 

     = min(1, 2) 

 

   Delete all points further than  from separation 

line L 

   Sort remaining points by y-coordinate. 

 

   Scan points in y-order and compare distance 

between 

   each point and next 11 neighbors. If any of 

these 

   distances is less than , update . 

 

   return . 

} 

Q. What is the run-time of this algorithm? (1 min) 
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Closest Pair Algorithm 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 

Q. What is the run-time of this algorithm? (1 min) 

Closest-Pair(p1, …, pn) { 

   if n = 1  

 return infinity (MAXINT) 

 

   Compute separation line L such that half the 

points 

   are on one side and half on the other side. 

 

   1 = Closest-Pair(left half) 

   2 = Closest-Pair(right half) 

     = min(1, 2) 

 

   Delete all points further than  from separation 

line L 

   Sort remaining points by y-coordinate. 

 

   Scan points in y-order and compare distance 

between 

   each point and next 11 neighbors. If any of 

these 

   distances is less than , update . 

 

   return . 

} 
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Closest Pair of Points:  Analysis 

Running time. 

 

 

 

 

Q.  Improve this algorithm to obtain a runtime of O(n log n). 

A.   

 Q. What then should be the run-time of one call to Closest-Pair? 

  



T( n )  2T n / 2   O (n log n )  T( n )    O (n log
2

n )
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Closest Pair of Points:  Analysis 

Running time. 

 

 

 

 

Q.  Improve this algorithm to obtain a runtime of O(n log n). 

A.  Don't sort points in strip from scratch each time. 

 Each recursive returns two lists: all points sorted by y coordinate, and 

all points sorted by x coordinate. 

 Sort by merging two pre-sorted lists (with mutual links). 

 (Or sort up front, and make selection in O(n) time.) 

 

Similarly, solving the problem of finding the convex hull. 

  



T (n )  2T n / 2   O (n )  T( n )  O (n log n )

  



T( n )  2T n / 2   O (n log n )  T( n )    O (n log
2

n )


