
5.4 Closest Pair of Points

2

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

 Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.

 Special case of nearest neighbor, Euclidean MST, Voronoi.

Q. How much comparisons do we need in a brute-force method?

Q. How much comparisons do we need if points are on a line?

fast closest pair inspired fast algorithms for these problems

3

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

 Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.

 Special case of nearest neighbor, Euclidean MST, Voronoi.

Q. How much comparisons do we need in a brute-force method?

A. Check all pairs of points p and q with (n2) comparisons.

Q. How much comparisons do we need if points are on a line?

A. O(n log n): easy if points are on a line (or O(n) if already sorted).

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

4

Closest Pair of Points: First Attempt

Q. How would a divide & conquer approach look like?

5

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

6

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

7

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

L

8

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

 Conquer: find closest pair in each side recursively.

12

21

L

9

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

 Conquer: find closest pair in each side recursively.

 Combine?: find closest pair with one point on each side.

 Return best of 3 solutions.

12

21
8

L

10

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

 Conquer: find closest pair in each side recursively.

 Combine: find closest pair with one point on each side.

 Return best of 3 solutions.

12

21
8

L

seems like (n2)

11

Closest Pair of Points

Q. To combine, do we need to consider all points on the left and all points

on the right of L?

12

21
8

L

12

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance < .

12

21

 = min(12, 21)

L

13

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance < .

 Observation: only need to consider points within  of line L.

12

21



L

 = min(12, 21)

14

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point on each side, assuming that distance < .

 Observation: only need to consider points within  of line L.

 Sort points in 2-strip by their y coordinate.

Q. Do we need to consider all points in this strip?

L

 = min(12, 21)

15

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point on each side, assuming that distance < .

 Observation: only need to consider points within  of line L.

 Sort points in 2-strip by their y coordinate.

 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

16

Closest Pair of Points

Def. Let si be the point in the 2-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| > 11, then the distance between

si and sj is at least .

Pf.

 No two points lie in same ½-by-½ box.

 Two points at least 2 rows apart

have distance  2(½).

 Only consider points within 0, 1, or 2 rows. ▪

Fact. Still true if we replace 11 with 7.

Fact. Or even less if we consider left and right

 columns separately (e.g. 6).


27

29

31

28

26 25



½ 2 rows

½

½
39

i

j

17

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 if n = 1

 return infinity (MAXINT)

 Compute separation line L such that half the

points

 are on one side and half on the other side.

 1 = Closest-Pair(left half)

 2 = Closest-Pair(right half)

  = min(1, 2)

 Delete all points further than  from separation

line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance

between

 each point and next 11 neighbors. If any of

these

 distances is less than , update .

 return .

}

Q. What is the run-time of this algorithm? (1 min)

18

Closest Pair Algorithm

2T(n / 2)

O(n)

O(n log n)

O(n)

Q. What is the run-time of this algorithm? (1 min)

Closest-Pair(p1, …, pn) {

 if n = 1

 return infinity (MAXINT)

 Compute separation line L such that half the

points

 are on one side and half on the other side.

 1 = Closest-Pair(left half)

 2 = Closest-Pair(right half)

  = min(1, 2)

 Delete all points further than  from separation

line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance

between

 each point and next 11 neighbors. If any of

these

 distances is less than , update .

 return .

}

19

Closest Pair of Points: Analysis

Running time.

Q. Improve this algorithm to obtain a runtime of O(n log n).

A.

 Q. What then should be the run-time of one call to Closest-Pair?



T(n)  2T n / 2   O (n log n)  T(n)  O (n log
2

n)

20

Closest Pair of Points: Analysis

Running time.

Q. Improve this algorithm to obtain a runtime of O(n log n).

A. Don't sort points in strip from scratch each time.

 Each recursive returns two lists: all points sorted by y coordinate, and

all points sorted by x coordinate.

 Sort by merging two pre-sorted lists (with mutual links).

 (Or sort up front, and make selection in O(n) time.)

Similarly, solving the problem of finding the convex hull.



T (n)  2T n / 2   O (n)  T(n)  O (n log n)



T(n)  2T n / 2   O (n log n)  T(n)  O (n log
2

n)

