
5.4  Closest Pair of Points 



2 

Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them. 

 

Fundamental geometric primitive. 

 Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control. 

 Special case of nearest neighbor, Euclidean MST, Voronoi. 

 

 

Q.  How much comparisons do we need in a brute-force method? 

 

 

Q.  How much comparisons do we need if points are on a line? 

 

 

fast closest pair inspired fast algorithms for these problems 



3 

Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them. 

 

Fundamental geometric primitive. 

 Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control. 

 Special case of nearest neighbor, Euclidean MST, Voronoi. 

 

 

Q.  How much comparisons do we need in a brute-force method? 

A.  Check all pairs of points p and q with (n2) comparisons. 

 

Q.  How much comparisons do we need if points are on a line? 

A.  O(n log n): easy if points are on a line (or O(n) if already sorted). 

 

Assumption.  No two points have same x coordinate. 

to make presentation cleaner 

fast closest pair inspired fast algorithms for these problems 



4 

Closest Pair of Points:  First Attempt 

Q.  How would a divide & conquer approach look like? 

 



5 

Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 

 



6 

Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 

Obstacle.  Impossible to ensure n/4 points in each piece. 

 

 



7 

Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 

 

L 



8 

Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

12 

21 

L 



9 

Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

 Combine?:  find closest pair with one point on each side. 

 Return best of 3 solutions. 

 

12 

21 
8 

L 



10 

Closest Pair of Points 

Algorithm. 

 Divide:  draw vertical line L so that roughly ½n points on each side. 

 Conquer:  find closest pair in each side recursively. 

 Combine:  find closest pair with one point on each side. 

 Return best of 3 solutions. 

 

12 

21 
8 

L 

seems like (n2)  



11 

Closest Pair of Points 

Q. To combine, do we need to consider all points on the left and all points 

on the right of L? 

12 

21 
8 

L 



12 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

12 

21 

 = min(12, 21) 

L 



13 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

12 

21 

 

L 

 = min(12, 21) 



14 

12 

21 

1 

2 

3 

4 
5 

6 

7 

 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

 Sort points in 2-strip by their y coordinate. 

Q. Do we need to consider all points in this strip? 

L 

 = min(12, 21) 



15 

12 

21 

1 

2 

3 

4 
5 

6 

7 

 

Closest Pair of Points 

Find closest pair with one point on each side, assuming that distance < . 

 Observation:  only need to consider points within  of line L. 

 Sort points in 2-strip by their y coordinate. 

 Only check distances of those within 11 positions in sorted list! 

L 

 = min(12, 21) 



16 

Closest Pair of Points 

Def.  Let si be the point in the 2-strip, with 

the ith smallest y-coordinate. 

 

Claim.  If |i – j| > 11, then the distance between 

si and sj is at least . 

Pf. 

 No two points lie in same ½-by-½ box. 

 Two points at least 2 rows apart 

have distance   2(½).   

 Only consider points within 0, 1, or 2 rows. ▪ 

 

 

Fact.  Still true if we replace 11 with 7. 

Fact.  Or even less if we consider left and right  

 columns separately (e.g. 6). 
 

27 

29 

31 

28 

26 25 

 

½  2 rows 

½ 

½ 
39 

i 

j 



17 

Closest Pair Algorithm 

Closest-Pair(p1, …, pn) { 

   if n = 1  

 return infinity (MAXINT) 

 

   Compute separation line L such that half the 

points 

   are on one side and half on the other side. 

 

   1 = Closest-Pair(left half) 

   2 = Closest-Pair(right half) 

     = min(1, 2) 

 

   Delete all points further than  from separation 

line L 

   Sort remaining points by y-coordinate. 

 

   Scan points in y-order and compare distance 

between 

   each point and next 11 neighbors. If any of 

these 

   distances is less than , update . 

 

   return . 

} 

Q. What is the run-time of this algorithm? (1 min) 



18 

Closest Pair Algorithm 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 

Q. What is the run-time of this algorithm? (1 min) 

Closest-Pair(p1, …, pn) { 

   if n = 1  

 return infinity (MAXINT) 

 

   Compute separation line L such that half the 

points 

   are on one side and half on the other side. 

 

   1 = Closest-Pair(left half) 

   2 = Closest-Pair(right half) 

     = min(1, 2) 

 

   Delete all points further than  from separation 

line L 

   Sort remaining points by y-coordinate. 

 

   Scan points in y-order and compare distance 

between 

   each point and next 11 neighbors. If any of 

these 

   distances is less than , update . 

 

   return . 

} 



19 

Closest Pair of Points:  Analysis 

Running time. 

 

 

 

 

Q.  Improve this algorithm to obtain a runtime of O(n log n). 

A.   

 Q. What then should be the run-time of one call to Closest-Pair? 

  



T( n )  2T n / 2   O (n log n )  T( n )    O (n log
2

n )



20 

Closest Pair of Points:  Analysis 

Running time. 

 

 

 

 

Q.  Improve this algorithm to obtain a runtime of O(n log n). 

A.  Don't sort points in strip from scratch each time. 

 Each recursive returns two lists: all points sorted by y coordinate, and 

all points sorted by x coordinate. 

 Sort by merging two pre-sorted lists (with mutual links). 

 (Or sort up front, and make selection in O(n) time.) 

 

Similarly, solving the problem of finding the convex hull. 

  



T (n )  2T n / 2   O (n )  T( n )  O (n log n )

  



T( n )  2T n / 2   O (n log n )  T( n )    O (n log
2

n )


