5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST, Voronoi.
1 fast closest pair inspired fast algorithms for these problems
Q. How much comparisons do we need in a brute-force method?
Q. How much comparisons do we need if points are on a line?

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST, Voronoi.
1 fast closest pair inspired fast algorithms for these problems
Q. How much comparisons do we need in a brute-force method?
A. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
Q. How much comparisons do we need if points are on a line?
A. $O(n \log n$): easy if points are on a line (or $O(n)$ if already sorted).

Assumption. No two points have same x coordinate.

Closest Pair of Points: First Attempt

Q. How would a divide \& conquer approach look like?

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine?: find closest pair with one point on each side.
- Return best of 3 solutions.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point on each side. \leftarrow seems like $\Theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Q. To combine, do we need to consider all points on the left and all points on the right of L ?

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance $<\delta$.
. Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
Q. Do we need to consider all points in this strip?

Closest Pair of Points

Find closest pair with one point on each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
. Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y-coordinate.

Claim. If $|\mathrm{i}-\mathrm{j}|>11$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $1 / 2 \delta$-by- $1 / 2 \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(1 / 2 \delta)$.
- Only consider points within 0,1 , or 2 rows. -

Closest Pair Algorithm

Closest-Pair ($\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$) \{
if $\mathrm{n}=1$ return infinity (MAXINT)

Compute separation line L such that half the points
are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair(right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.
Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of

distances is less than δ, update δ.

Closest Pair Algorithm

Closest-Pair ($\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$) \{
if $\mathrm{n}=1$ return infinity (MAXINT)

Compute separation line L such that half the points
are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair(right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.
$2 T(n / 2)$

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of
Q. . 2 有
distances is less than δ, update δ.

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Improve this algorithm to obtain a runtime of $O(n \log n)$.
A.
Q. What then should be the run-time of one call to Closest-Pair?

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Improve this algorithm to obtain a runtime of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
A. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists (with mutual links).
- (Or sort up front, and make selection in $\mathrm{O}(\mathrm{n})$ time.)

Similarly, solving the problem of finding the convex hull.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

