2.1 Computational Tractability

Pascaline

http://en.wikipedia.org/wiki/Pascal %27s_calculator

Blaise Pascal’s 17t century calculator (addition and subtraction)

%
TU Delft

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Difference machine (1991)

“father of the compu‘rer'" ht.t[?://.en.mklpedla.or.q/
http://en.wikipedia.org/wiki/Babbage#cite note-0 wiki/Difference machine TU Delft

http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Ada Lovelace (1838) Analytic Engine (schematic)
http://en.wikipedia.org/wiki/Ada_Lovelace http://en.wikipedia.org/wiki/

5
Analytical engine TU De I ft

http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that checks every possible solution.

. Typically takes 2" time or worse for inputs of size n.

. Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?
A.

]
TUDelft

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that checks every possible solution.

. Typically takes 2" time or worse for inputs of size n.

. Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?
A. n! Because first man has n possible women, second man n-1, etc.

]
TUDelft

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm
should only slow down by some constant factor C.

E.g. If run-time bounded by n?, then (2n)2 = 4n2, so slowdown is 4.

]
TUDelft

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm
should only slow down by some constant factor C.

E.g. If run-time bounded by n?, then (2n)2 = 4n2, so slowdown is 4.

Q. What is slow-down when run-time is bounded by c -n9 steps and input
doubles?

A.

]
TUDelft

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm
should only slow down by some constant factor C.

E.g. If run-time bounded by n?, then (2n)2 = 4n2, so slowdown is 4.
Q. What is slow-down when run-time is bounded by c -n9 steps and input
doubles?

A. cnd becomes c(2n)4=c2d9nd, so slowdown is 24
Eg. if algorithm uses 40 -n3 steps, slowdown is 8.

There exists constants ¢ > 0 and d > O such that on every
input of size n, its running time is bounded by c-nd steps.

Def. An algorithm is poly-time if the above scaling property holds.

Worst-Case Analysis

Worst case running time. Obtain (upper) bound on largest possible run
time of algorithm on input of a given size n (or n and m for graphs, or...).
. Generally captures efficiency in practice.
. Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on

random input as a function of input size n.
. Hard (or impossible) to accurately model real instances by random

distributions.
. Algorithm tuned for a certain distribution may perform poorly on other

inputs.

]
TUDelft

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
. In practice, the poly-time algorithms that people develop almost always
have low constants and low exponents (not 6.02 x 102 x n?20 or so).
. Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.

. Some poly-time algorithms do have high constants and/or exponents,
and are useless in practice.
. Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare.

simplex method
Unix grep

]
TUDelft

1

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n3 1.5F on n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 < 1 sec <1lsec <1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec l1sec 12,892 years 107 years very long

n =1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

]
TUDelft

Run-time

2000

1800 |

1600 |

1400 |

1200 |

1000 |

800 |

600 |

400 |

200 |

log scale

Run-time

1e+09 |

1e+08 |

1e+07 |

1e+06 |

100000 |

10000 |

1000 |

100 |

10 |

O(n)
O(nlog(n)) —~
O(n?2) —7—
O(n”3)
O(1.5%n)
Q(27n)

30 40

50

