
2.1  Computational Tractability 
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Blaise Pascal’s 17th century calculator (addition and subtraction) 

http://en.wikipedia.org/wiki/Pascal%27s_calculator 
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Computational Tractability 

 

 

Charles Babbage (1864) 

“father of the computer” 

http://en.wikipedia.org/wiki/Babbage#cite_note-0 

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By what 

course of calculation can these results be arrived at by the 

machine in the shortest time?  - Charles Babbage 

Difference machine (1991) 

http://en.wikipedia.org/ 

wiki/Difference_machine 

http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
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Computational Tractability 

 

 

Ada Lovelace (1838) 

http://en.wikipedia.org/wiki/Ada_Lovelace 

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By what 

course of calculation can these results be arrived at by the 

machine in the shortest time?  - Charles Babbage 

Analytic Engine (schematic) 

http://en.wikipedia.org/wiki/ 

Analytical_engine 

http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine
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Computational Tractability 

Brute force.  For many non-trivial problems, there is a natural brute force 

search algorithm that checks every possible solution. 

 Typically takes 2n time or worse for inputs of size n. 

 Unacceptable in practice: n increased by 1, computation doubles. 

 

Q.  What is the brute-force running time for stable matching? 

A.   
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Computational Tractability 

Brute force.  For many non-trivial problems, there is a natural brute force 

search algorithm that checks every possible solution. 

 Typically takes 2n time or worse for inputs of size n. 

 Unacceptable in practice: n increased by 1, computation doubles. 

 

Q.  What is the brute-force running time for stable matching? 

A.  n!   Because first man has n possible women, second man n-1, etc. 
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Polynomial-Time 

 

Desirable scaling property.  When the input size n doubles, the algorithm 

should only slow down by some constant factor C.  

 

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.  
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Polynomial-Time 

 

Desirable scaling property.  When the input size n doubles, the algorithm 

should only slow down by some constant factor C.  

 

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.  

 

Q.  What is slow-down when run-time is bounded by  cnd steps and input 

doubles? 

 

A.   
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Polynomial-Time 

 

Desirable scaling property.  When the input size n doubles, the algorithm 

should only slow down by some constant factor C.  

 

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.  

 

Q.  What is slow-down when run-time is bounded by  cnd steps and input 

doubles? 

A.  cnd  becomes c(2n)d = c2dnd , so slowdown is 2d 

Eg. if algorithm uses 40n3 steps, slowdown is 8. 

 

 

 

 

 

Def.  An algorithm is poly-time if the above scaling property holds. 

There exists constants c > 0 and d > 0 such that on every 

input of size n, its running time is bounded by cnd steps. 
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Worst-Case Analysis 

Worst case running time.  Obtain (upper) bound on largest possible run 

time of algorithm on input of a given size n (or n and m for graphs, or…). 

 Generally captures efficiency in practice. 

 Draconian view, but hard to find effective alternative.  

 

 

Average case running time.  Obtain bound on running time of algorithm on 

random input as a function of input size n. 

 Hard (or impossible) to accurately model real instances by random 

distributions. 

 Algorithm tuned for a certain distribution may perform poorly on other 

inputs. 
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Worst-Case Polynomial-Time 

Def.  An algorithm is efficient if its running time is polynomial. 

 

Justification:  It really works in practice! 

 In practice, the poly-time algorithms that people develop almost always 

have low constants and low exponents (not 6.02  1023  n20 or so). 

 Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem. 

 

Exceptions. 

 Some poly-time algorithms do have high constants and/or exponents, 

and are useless in practice. 

 Some exponential-time (or worse) algorithms are widely used because 

the worst-case instances seem to be rare. 
simplex method 

Unix grep 
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Why It Matters 
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