
2.1 Computational Tractability

Pascaline

2

Blaise Pascal’s 17th century calculator (addition and subtraction)

http://en.wikipedia.org/wiki/Pascal%27s_calculator

3

Computational Tractability

Charles Babbage (1864)

“father of the computer”

http://en.wikipedia.org/wiki/Babbage#cite_note-0

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Difference machine (1991)

http://en.wikipedia.org/

wiki/Difference_machine

http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine

4

Computational Tractability

Ada Lovelace (1838)

http://en.wikipedia.org/wiki/Ada_Lovelace

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

http://en.wikipedia.org/wiki/

Analytical_engine

http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine

5

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force

search algorithm that checks every possible solution.

 Typically takes 2n time or worse for inputs of size n.

 Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?

A.

6

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force

search algorithm that checks every possible solution.

 Typically takes 2n time or worse for inputs of size n.

 Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?

A. n! Because first man has n possible women, second man n-1, etc.

7

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

8

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

Q. What is slow-down when run-time is bounded by cnd steps and input

doubles?

A.

9

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

Q. What is slow-down when run-time is bounded by cnd steps and input

doubles?

A. cnd becomes c(2n)d = c2dnd , so slowdown is 2d

Eg. if algorithm uses 40n3 steps, slowdown is 8.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every

input of size n, its running time is bounded by cnd steps.

10

Worst-Case Analysis

Worst case running time. Obtain (upper) bound on largest possible run

time of algorithm on input of a given size n (or n and m for graphs, or…).

 Generally captures efficiency in practice.

 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on

random input as a function of input size n.

 Hard (or impossible) to accurately model real instances by random

distributions.

 Algorithm tuned for a certain distribution may perform poorly on other

inputs.

11

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

 In practice, the poly-time algorithms that people develop almost always

have low constants and low exponents (not 6.02  1023  n20 or so).

 Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.

 Some poly-time algorithms do have high constants and/or exponents,

and are useless in practice.

 Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare.
simplex method

Unix grep

12

Why It Matters

13

14

lo
g

sc
al

e

