
2.1 Computational Tractability

Pascaline

2

Blaise Pascal’s 17th century calculator (addition and subtraction)

http://en.wikipedia.org/wiki/Pascal%27s_calculator

3

Computational Tractability

Charles Babbage (1864)

“father of the computer”

http://en.wikipedia.org/wiki/Babbage#cite_note-0

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Difference machine (1991)

http://en.wikipedia.org/

wiki/Difference_machine

http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Babbage
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine
http://en.wikipedia.org/wiki/Difference_machine

4

Computational Tractability

Ada Lovelace (1838)

http://en.wikipedia.org/wiki/Ada_Lovelace

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

http://en.wikipedia.org/wiki/

Analytical_engine

http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Analytical_engine

5

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force

search algorithm that checks every possible solution.

 Typically takes 2n time or worse for inputs of size n.

 Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?

A.

6

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force

search algorithm that checks every possible solution.

 Typically takes 2n time or worse for inputs of size n.

 Unacceptable in practice: n increased by 1, computation doubles.

Q. What is the brute-force running time for stable matching?

A. n! Because first man has n possible women, second man n-1, etc.

7

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

8

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

Q. What is slow-down when run-time is bounded by cnd steps and input

doubles?

A.

9

Polynomial-Time

Desirable scaling property. When the input size n doubles, the algorithm

should only slow down by some constant factor C.

E.g. If run-time bounded by n2, then (2n)2 = 4n2, so slowdown is 4.

Q. What is slow-down when run-time is bounded by cnd steps and input

doubles?

A. cnd becomes c(2n)d = c2dnd , so slowdown is 2d

Eg. if algorithm uses 40n3 steps, slowdown is 8.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every

input of size n, its running time is bounded by cnd steps.

10

Worst-Case Analysis

Worst case running time. Obtain (upper) bound on largest possible run

time of algorithm on input of a given size n (or n and m for graphs, or…).

 Generally captures efficiency in practice.

 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on

random input as a function of input size n.

 Hard (or impossible) to accurately model real instances by random

distributions.

 Algorithm tuned for a certain distribution may perform poorly on other

inputs.

11

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

 In practice, the poly-time algorithms that people develop almost always

have low constants and low exponents (not 6.02 1023 n20 or so).

 Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.

 Some poly-time algorithms do have high constants and/or exponents,

and are useless in practice.

 Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare.
simplex method

Unix grep

12

Why It Matters

13

14

lo
g

sc
al

e

