
5.3 Counting Inversions

2

Music site tries to match your song preferences with others.

 You rank n songs.

 Music site consults database to find people with similar tastes.

Q. How can we measure the distance between two rankings?

 My rank: b1, b2, …, bn with b1 < b2 < … < bn

 Your rank: a1, a2, …, an.

Me

You 1 4 3 2 5

1 3 2 4 5

A B C D E

Songs

Counting Inversions

3

Music site tries to match your song preferences with others.

 You rank n songs.

 Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

 My rank: b1, b2, …, bn with b1 < b2 < … < bn

 Your rank: a1, a2, …, an.

 Songs i and j inverted if i < j, but ai > aj.

Q. Give a brute-force algorithm to calculate the number of inversions.

Songs

Counting Inversions

Inversions

3-2, 4-2

Me

You 1 4 3 2 5

1 3 2 4 5

A B C D E

4

Music site tries to match your song preferences with others.

 You rank n songs.

 Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

 My rank: b1, b2, …, bn with b1 < b2 < … < bn

 Your rank: a1, a2, …, an.

 Songs i and j inverted if i < j, but ai > aj.

Brute force: check all (n2) pairs i and j (similar to bubble sort)

Songs

Counting Inversions

Inversions

3-2, 4-2

Me

You 1 4 3 2 5

1 3 2 4 5

A B C D E

5

Applications

Applications.

 Voting theory.

 Measuring the "sortedness" of an array.

 Sensitivity analysis of Google's ranking function.

 Rank aggregation for meta-searching on the Web.

 Collaborative filtering (amazon.com, restaurants, movies)

6

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

 Divide: separate list into two pieces.

Divide: O(1). 10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

8

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

 Divide: separate list into two pieces.

 Conquer: recursively count inversions in each half.

Divide: O(1).

Conquer: 2T(n / 2)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

9

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

 Divide: separate list into two pieces.

 Conquer: recursively count inversions in each half.

 Combine: count inversions where ai and aj are in different halves, and

return sum of three quantities.

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

10

Counting Inversions: Combine

Combine: count blue-green inversions

 Assume each half is sorted.

 Count inversions where ai and aj are in different halves.

 Merge two sorted halves into sorted whole.

10 14 18 19 3 7 16 17 23 25 2 11

to maintain sorted invariant

7 10 11 14 2 3 18 19 23 25 16 17

11

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions

 Assume each half is sorted.

 Count inversions where ai and aj are in different halves.

 Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17



T (n)  T n / 2   T n / 2   O (n)  T(n)  O (n log n)

6 3 2 2 0 0

to maintain sorted invariant

file://localhost/Domain/tudelft.net/Users/mdeweerdt/Home/onderwijs/algoritmiek-in2505/2010/slides/demo/05_demo-merge-invert.ppt

12

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

 if list L has one element

 return 0 and the list L

 Divide the list into two halves A and B

 (rA, A)  Sort-and-Count(A)

 (rB, B)  Sort-and-Count(B)

 (rB, L)  Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list

L

}

