7.6 Disjoint Paths

- Disjoint Paths Problem
- Max-flow/min-cut formulation (inc. proof)
- Network connectivity problem
- Max-flow/min-cut formulation (inc. proof)

Edge Disjoint Paths

Disjoint path problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.
Q. How many edge disjoint paths are possible here? (1, 2, or 3)

TUDelft

Edge Disjoint Paths

Disjoint path problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.
Q. How many edge disjoint paths are possible here? (1, 2, or 3)
A. Two.

TUDelft

Edge Disjoint Paths

Disjoint path problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.
Q. How can we formulate this as a maximum flow problem? (1 min)

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Q. How to compute the max number of edge-disjoint s-t paths?

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Q. How to compute the max number of edge-disjoint s-t paths? Theorem. Max number edge-disjoint s-t paths = max flow value. Pf.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Q. How to compute the max number of edge-disjoint s-t paths?

Theorem. Max number edge-disjoint s-t paths = max flow value.
Pf. \leq

- Suppose there are max k edge-disjoint s-t paths $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$.
- Set $\mathrm{f}(\mathrm{e})=$
- f is less than or equal than the maximum flow. .

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Q. How to compute the max number of edge-disjoint s-t paths?

Theorem. Max number edge-disjoint s-t paths = max flow value.
Pf. \leq
. Suppose there are max k edge-disjoint s-t paths P_{1}, \ldots, P_{k}.

- Set $f(e)=1$ if e participates in some path P_{i}; else set $f(e)=0$.
. f is a valid flow.
. Since s-t paths are edge-disjoint, f is a flow of value k.
- f is less than or equal than the maximum flow.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths = max flow value .
Pf. \geq
. Suppose max flow value is k .
. Produces k (not necessarily simple) edge-disjoint paths. .

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths = max flow value .
Pf. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Construct paths as follows: Consider edge (s, u) with $\mathrm{f}(\mathrm{s}, \mathrm{u})=1$.
- by conservation, there exists an edge (u, v) with $f(u, v)=1$
- continue until reach t, always choosing a new edge
. Produces k (not necessarily simple) edge-disjoint paths. .

Network Connectivity

Network connectivity problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find min number of edges whose removal disconnects t from s .

Def. A set of edges $\mathrm{F} \subseteq \mathrm{E}$ disconnects t from s if all s-t paths use at least one edge in F.
Q. Which edges to remove here?

TUDelft

Network Connectivity

Network connectivity problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find min number of edges whose removal disconnects t from s .

Def. A set of edges $\mathrm{F} \subseteq \mathrm{E}$ disconnects t from s if all s-t paths use at least one edge in F.
Q. Which edges to remove here?

TUDelft

Network Connectivity

Network connectivity problem. Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two nodes s and t , find min number of edges whose removal disconnects t from s .

Def. A set of edges $\mathrm{F} \subseteq \mathrm{E}$ disconnects t from s if all s-t paths use at least one edge in F.
Q. How to find the minimal number of edges to disconnect t from s ?

TUDelft

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths = the min number of edges whose removal disconnects t from s.

To prove:
(i) min \# of disconnecting edges $\leq \max \#$ of edge disjoint s-t paths
(ii) (max) \# of edge disjoint s-t paths \leq (min) \# of disconnecting edges

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths = the min number of edges whose removal disconnects t from s.

Pf. (i) min \# of disconnecting edges $\leq \max \#$ of edge disjoint s-t paths
. Suppose max number of edge-disjoint paths is k.
Q. Which set of edges disconnects t from s ?

- Let F be the set of edges ...
- $|\mathrm{F}|=\mathrm{k}$ and disconnects t from s .

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths $=$ the min number of edges whose removal disconnects t from s.

Pf. (i) min \# of disconnecting edges $\leq \max \#$ of edge disjoint s-t paths

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k. (Last theorem on edge-disjoint paths.)
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be the set of edges going from A to B.
- $|\mathrm{F}|=\mathrm{k}$ and disconnects t from s . (Because each edge has capacity 1.)
- so min \# of disconnecting edges $\leq k$ -

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths $=$ the min number of edges whose removal disconnects t from s.

Pf. (ii) (max) \# of edge disjoint s-t paths \leq (min) \# of disconnecting edges
. Let F be a set of disconnecting edges, and $|\mathrm{F}|=\mathrm{k}$.

- ...
- Hence, the number of edge-disjoint paths is at most k. .

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths = the min number of edges whose removal disconnects t from s.

Pf. (ii) (max) \# of edge disjoint s-t paths \leq (min) \# of disconnecting edges

- Let F be a set of disconnecting edges, and $|\mathrm{F}|=\mathrm{k}$.
- All s-t paths use at least one edge of F.
. No overlap between paths is allowed.
- Hence, the number of edge-disjoint paths is at most k. .

