Algoritmiek, Graph Exercise — Example Solution

Tom Schenkels, Delft University of Technology
March 11, 2011

Task A

Since hyperlinks point in one direction they will be represented by directed edges. So we use a
directed graph wherein the nodes represent individual webpages. We note that pages may refer to
themselves, which is represented by an edge going out of one and entering another node. In real
life, multiple hyperlinks can point from one page to another. That could be modeled by weighted
edges, but I think that exceeds the scope of this assignment, so I won’t implement that. I will
represent the directed graph as a double adjacency list as explained in the book (pg. 97).

The number of nodes will always be denoted by n. The upper bound on the number of edges
m will arise when all nodes point to all other nodes, are pointed to by all other nodes and also
point to themself. The maximum number of edges in an undirected graph is (g) (pg. 87). So when
edges are directed and you add the fact that nodes may have an edge pointing to themself, you get
2() +n = n?.

Task B

All other nodes in the graph can be reached from node p if a directed exploration algorithm starting
from p reaches all nodes in the graph. I will use BFS, but DFS would complete the job just as well.

Algorithm 1 BFS from p for directed graphs

Set Discovered[p] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i = 0
while L[i] is not empty do
Initialize an empty list L[i 4 1]
for each node w in L[i] do
Consider each outgoing edge (u,v)
if Discovered[v] = false then
Set Discovered[v] = true
Add v to the list L[i + 1]
end if
end for
Increment the layer counter ¢ by one
end while

I will use a BFS algorithm similar to the one on page 90. The only difference is in line 7 in
Algorithm 1. In the book, the line is ”Consider each edge (u,v) incident to node u”. I changed
it so the algorithm looks only at the outgoing edges of node u. Also, for the task at hand it is



not necessary to construct the BFS tree. If you leave the build up layers intact you have all the
information that you need. To complete Task B algorithm 2 is needed.

Algorithm 2 Task B

BFS(p)

if Number of nodes discovered equals n then
return 1

else

return 0
end if

When the search is completed we compare the number of discovered nodes with n. If it is equal,
all nodes were reached, so 1 is returned. Otherwise not all nodes could be reached, so 0 is returned.

At most, n? edges get looked at in the BFS. For each of them constant time is required. Looking
up if all nodes were discovered takes O(n) time. Thus, the tightest upper bound on the running
time is O(m + n).

Task C

Algorithm 3 Task C
for All nodes do
count[w] < amount of incoming edges of node w
end for
s = set of remaining nodes with no incoming edges
while s is not empty do
remove node v from s
decrease count[w] for all edges from v to w
if count[w] hits 0 then
add w to s
end if
end while
if count[v] is lower or equal to 0 for all nodes v in graph then
return 0
else
return 1
end if

I will implement the algorithm for topological ordering which can be found on page 26 of the
slides on “DAGs_and_Topological Ordering”. It works by removing nodes which have no incoming
edges, thereby decreasing the number of incoming edges for other nodes. If, by following this
procedure, all nodes can be removed, the graph has no cycles. Algorithm 3 shows the pseudocode
for Task C.

Counting the number of incoming edges for all nodes takes O(n+m) time. The task of removing
nodes without incoming edges takes O(n 4+ m) time too. At last, checking if all nodes could be
removed takes O(n) time. Also, the running time of the total algorithm is O(n + m).

Why is it correct? If a graph contains a cycle, none of the nodes in the cycle can ever be removed
since they all have at least one incoming edge. If this is the case, the algorithm will stop and return
1. On the other hand, if the graph was a DAG, all nodes are removed and the algorithm returns 0.



Task D

In order to find the strongest component, all strong components should be found. Algorithm 4 uses
the fact that strong components in graphs are always disjoint, as mentioned on pg. 99 of the book.

Algorithm 4 Task D
sizeOfStrongestComponent <— 0
while discovered[v] false for a node v do
Do BFS(v) on graph g and its reverse g#EV
discovered[w] + true if node w was in found strong component
if size of found strong component > sizeOfStrongestComponent then
sizeOfStrongestComponent < size of found component
end if
end while
return sizeOfStrongestComponent

Algorithm 4 discovers all strong components and returns the size of the biggest one. It makes
sure that all components are looked at by making sure that all nodes are in a strong component
that it has looked at.

Running a BFS takes O(m + n) time. Since all strong components could consist of a single
node, 2 x n BFS searches need to be done at most. So the total running time of the algorithm is
upper bounded by O(n(m + n)).

Task E

Algorithm 5 Task E
define distance, a 2D array to contain distances between nodes, initialize as 0 for all edges
for all nodes u do
BFS(u)
for each layer ¢ do
for each v € L[i] do
distance[u,v] « i
end for
end for
end for
return biggest value in distance array

Algorithm 5 performs a BFS from every node in the graph. Distances are read from the BFS
layers. If node v shows up in L3 produced by a BFS from node u, the shortest distance from u to
v is 3. But not the other way round, that distance is found when BFS is done from v. If a node
can’t be reached, the distance stays 0. In the end, the biggest distance is returned, the diameter.

Initializing the array takes O(n?) time. Performing a BFS for every node O(n * (n 4+ m)), and
finding the biggest value in the array O(n?). So the total time can be bound by O(n * (n +m)).



GraphMain. java

2011-03-11

GraphMain. java 2011-03-11
// Auteur: Tom Schenkels
// Datum: 17 feb 2010

public class Funda2

{

public static void main(String[] args)

{

String f = args[0];

Graph g = new Graph(f);
Graph gRev = new Graph(f).reverseGraph(Q);

// If no nodes were read, print correct output since the answers of

the output set are questionable

if(g.n == 0)

{
System.out.println("1\n@\n1\n@\n");
System.exit(0);

1

// Task B
// execute bfs, save discovered nodes
boolean[] discoveredNodes = (boolean[])g.bfs(g.startingPoint).get(0);
int nDiscoveredNodes = 0;
for(int i=0; i<g.n; i++)
if(discoveredNodes[i])

nDiscoveredNodes++;
int res = 0;
if(nDiscoveredNodes == g.n)
res = 1;

System.out.println(res);

// Task C
System.out.println(g.hasCycle());

// Task D
System.out.println(g.sizeOfStrongestComponent(g, gRev));

// Task E
System.out.println(g.diameter());

-1/2 -

- 2/2 -



Graph. java

2011-03-11

// Auteur:
// Datum:

Tom Schenkels
17 feb 2010

import java.io.*;
import java.util.*;

public class Graph

{
public String name;
public Integer startingPoint;
public int n;

public ArraylList<String> nodes = new ArraylList<String>(Q);

public HashMap<Integer, ArraylList<Integer>> leaving = new
HashMap<Integer, ArraylList<Integer>>(Q);

public HashMap<Integer, ArraylList<Integer>> entering = new
HashMap<Integer, ArraylList<Integer>>();

// Reads graph in from file file
public Graph(String file){

Scanner sc;

try
{
sc = new Scanner(new File(file));
}
catch (FileNotFoundException e)
{
// Auto-generated catch block
e.printStackTrace();
sc = null;
}

sc.next(); // read 'digraph'
name = sc.next(); // read name
sc.next(); // read '{'

String sNext = sc.next();

while(!sNext.equals("}"))

{
// read from and to node
String from = sNext;
sc.next(); // read '->
String to = sc.next().replace(";", "");

// check if we have read them already, if not add them to the

- 1/7 -

Graph. java

2011-03-11

adjacency lists

if (!nodes.contains(from))

{
nodes.add(from);
Integer iFrom = nodes.indexOf(from);
leaving.put(iFrom, new ArrayList<Integer>());
entering.put(iFrom, new ArraylList<Integer>());
}

Integer iFrom = nodes.indexOf(from);

if (!nodes.contains(to))

{
nodes.add(to);
leaving.put(nodes.index0f(to), new ArraylList<Integer>());
entering.put(nodes.index0f(to), new ArraylList<Integer>());
3

Integer iTo = nodes.index0f(to);

// add edges to adjacency lists
leaving.get(iFrom).add(iTo);

entering.get(iTo).add(iFrom);
sNext = sc.next();

}

String sStartingPoint = sc.next();
if (!nodes.contains(sStartingPoint))

{
nodes.add(sStartingPoint);
Integer iStartingPoint = nodes.indexO0f(sStartingPoint);
leaving.put(iStartingPoint, new ArraylList<Integer>());
entering.put(iStartingPoint, new Arraylist<Integer>());
}

startingPoint = nodes.indexOf(sStartingPoint);

// save total amount of nodes
n = nodes.size();

}

// Does an outward BFS starting from iStartingPoint

// Returns ArraylList with discovered[boolean] and found layers 1
public Arraylist bfs(Integer iStartingPoint)

{

// Initialize discovered. True for starting point, false for others.

- 2/7 -



Graph. java 2011-03-11 Graph. java 2011-03-11

boolean[] discovered = new boolean[this.n]; layers at index 1
discovered[iStartingPoint.intValue()] = true; ArraylList res = new ArraylList();
res.add(discovered);
// Initialize L@ to consist of one point only; the starting point res.add(l);
ArraylList<ArraylList<Integer>> 1 = new return res;
ArraylList<ArraylList<Integer>>(); }
ArraylList<Integer> 10 = new ArraylList<Integer>();
10.add(iStartingPoint); // Returns 1 if graph contains cycle
1.add(10); public Integer hasCycle()
{
// Set layer counter i = 0 // count[w] = remaining number of incoming edges in w
int bfsLayer = 0; Integer[] count = new Integer[this.n];
// s = set of remaining nodes with no incoming edges
// While current list is not empty ArraylList<Integer> s = new ArraylList<Integer>(Q);

while(!1l.get(bfsLayer).isEmpty()){
// Initialization: O(Cm + n) via single scan through graph.
for(int node = @; node < this.n; node++)

// Initialize an empty list L[i+1] {
1.add(new ArraylList<Integer>()); // Save number of incoming edges
ArraylList<Integer> incomingEdges = this.entering.get(node);
ArraylList<Integer> currentL = 1l.get(bfsLayer); count[node] = incomingEdges.size();
ArraylList<Integer> nextL = l.get(bfsLayer + 1); // If @, add to s
if(count[node] == 0)
// For each node u in L[i] (currentl) s.add(node);
for(int nodeNumber = @; nodeNumber<currentlL.size(); }
nodeNumber++){
// While there is a node with no incoming edges
// Consider each edge (u,v) leaving/entering u while(!s.isEmpty())
// for all leaving edges {
for(int edgeNumber = @; edgeNumber < // Update: to delete v
this.leaving.get(currentL.get(nodeNumber)).size(); edgeNumber++) Integer v = s.remove(0);
{
Integer toNode = // decrement count[w] for all edges from v to w, and add w to S
this.leaving.get(currentL.get(nodeNumber)).get(edgeNumber); if count[w] hits @
for(int w = @; w < leaving.get(v).size(); w++)
if(discovered[toNode] == false){ {
discovered[toNode] = true; Integer nodeW = leaving.get(v).get(w);
nextL.add(toNode); if(--count[nodeW] == @)
} s.add(nodeW);
} }
} 1
bfsLayer++;
} // Count number of remaining nodes
int nRemaining = 0;
// We will return an Arraylist with discovered at index @ and the for(int node = @; node < this.n; node++)

- 3/7 - - 4/7 -



Graph. java

2011-03-11

{
if(count[node] > @)
nRemaining++;

}

if(nRemaining == @)
// All nodes could be removed. So it is a DAG, so no cycles, so

return 0.
return 0;
else
// Not all nodes could be removed. So it has cycles.
return 1;
}

// Returns size of Strongest Component
public int sizeOfStrongestComponent(Graph g, Graph gRev)

{

// Remember which nodes were in a strong component
boolean[] inStrongComponent = new boolean[n];

// Remember how big the strongest component was
int sizeOfStrongestComponent = 0;

while(hasFalse(inStrongComponent))
{

Integer currentNode = findFirstFalse(inStrongComponent);

// Initiate bfs on g from currentNode

boolean[] outward = (boolean[])g.bfs(currentNode).get(0);
// Initiate bfs on gArev from currentNode

boolean[] inward = (boolean[])gRev.bfs(currentNode).get(0);

// Calculate size of strong component
int sizeOfStrongComponent = 0;
for(int node = @; node < n; node++)

{
// if node was in strong component
if(outward[node] && inward[node])
{
sizeOfStrongComponent++;
inStrongComponent[node] = true;
1
}

// Save new max size if it is bigger than what we've found before
if(size0fStrongComponent > sizeOfStrongestComponent)

- 5/7 -

Graph. java

2011-03-11

}

sizeOfStrongestComponent = sizeOfStrongComponent;

3

return sizeOfStrongestComponent;

public int diameter()

{

// Initialize 2D array to hold distances from and to nodes
int[][] distanceFromTo = new int[n][n];

// for each node u
for(int u = @; u < n; u++)
{
// Initiate bfs and save layers
ArraylList<ArraylList<Integer>> 1 = (ArraylList<Arraylist<Integer>>)

bfsCu).get(1);

}

// for each layer
for(int bfsLayer = 0@; bfsLayer < l.size(); bfsLayer++)
{
//for each node v in layer
for(int v = @; v < 1.get(bfsLayer).size(); v++)
{
// save distince from u to v in array
distanceFromTo[u][v] = bfsLayer;

3

// Find biggest distance in array
int maxDistance = 0;
for(int x=0; x<n; Xx++)
for(int y=0; y<n; y++)
if(distanceFromTo[x][y]>maxDistance)
maxDistance = distanceFromTo[x][y];

// And return it
return maxDistance;

public Graph reverseGraph()

{

HashMap<Integer, ArraylList<Integer>> tmp = this.entering;
this.entering = this.leaving;

- 6/7 -



Graph. java 2011-03-11
this.leaving = tmp;

return this;

}
private boolean hasFalse(boolean[] inStrongComponent)
{
return findFirstFalse(inStrongComponent) != -1;
}

private Integer findFirstFalse(boolean[] inStrongComponent)
{
for(int i = @; i<n; i++)
if(inStrongComponent[i] == false)
return i;
return -1;

-7/7 -



	2
	GraphMain
	Graph

