3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t ?
s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t ?

Applications.

- Hyves.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

Goal: find an algorithm that can answer these questions.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $\mathrm{L}_{0}=\{\mathrm{s}\}$.

- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $\mathrm{L}_{\mathrm{i}+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.
Q. Is there always a path for any node in L_{i} to s ?
Q. If so, what is the length of the path of a node in L_{i} to s ?

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $\mathrm{L}_{0}=\{\mathrm{s}\}$.
- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $\mathrm{L}_{\mathrm{i}+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.
Q. Is there always a path for any node in L_{i} to s ?
A. Yes, only nodes are added that have an edge to the previous node.
Q. If so, what is the length of the path of a node in L_{i} to s ?
A. Exactly i.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $\mathrm{L}_{0}=\{\mathrm{s}\}$.

- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $\mathrm{L}_{\mathrm{i}+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.

Theorem. For each $\mathrm{i}, \mathrm{L}_{\mathrm{i}}$ consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search: Analysis

```
i = 0; L[0]={s}
discovered[s]=true and false for all others
while (L[i] not empty) {
    for (each node u in L[i])
        for (each edge (u,v))
        if (discovered[v] = false) {
                        discovered[v] = true
    add v to list L[i+1]
    }
    i=i+1
}
```

Q. What is the run-time of the BFS algorithm? (1 min)

Breadth First Search: Analysis

```
i = 0; L[0]={s}
discovered[s]=true and false for all others
while (L[i] not empty) {
    for (each node u in L[i])
        for (each edge (u,v))
            if (discovered[v] = false) {
                                    discovered[v] = true
                                    add v to list L[i+1]
        }
    i=i+1
}
```

Q. What is the run-time of the BFS algorithm?
A. $O\left(n^{2}\right)$

- at most n lists L[i]
- each node occurs on at most one list; outermost for loop runs $\leq \mathrm{n}$ times
- when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $\mathrm{O}(1)$ processing each edge

Breadth First Search: Analysis

```
i = 0; L[0]={s}
discovered[s]=true and false for all others
while (L[i] not empty) {
    for (each node u in L[i])
        for (each edge (u,v))
            if (discovered[v] = false) {
                                    discovered[v] = true
                                    add v to list L[i+1]
        }
    i=i+1
}
```

Q. What is the run-time of the BFS algorithm?
A. $O(n+m)$

- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is $\Sigma_{\mathrm{u} \in \mathrm{V}} \mathrm{deg}(\mathrm{u})=2 \mathrm{~m}$.
- n steps to setup discovered array
Q. Which graph datastructure is assumed here?
\qquad each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in $\operatorname{deg}(v)$

THDelft

Breadth First Search

Property. Let T be a BFS tree of $G=(V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1 .

(c)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1=\{1,2,3,4,5,6,7,8\}$.
Q. How many connected components are there in this graph?

Connected Component

Connected component. Find all nodes reachable from s.

```
R will consist of nodes to which s has a path
Initially R = {s}
While there is an edge (u,v) where }u\inR\mathrm{ and v}\not\in
    Add v to R
Endwhile
```


Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s .
- DFS = explore in a different way.

TUDelft

(a)

(e)

(b)

(f)

(c)

(d)

(g)

Q. Does this remind you of a search method you've seen last year?
Q. How could you implement this?

DFS

(Like backtracking)

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge (u,v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
    Endfor
```

