3.2 Graph Traversal




Connectivity

s-t connectivity problem. Given two node s and t, is there a path between
s and t?

s-t shortest path problem. Given two node s and t, what is the length of
the shortest path between s and t?

Applications.
= Hyves.
= Maze traversal.
= Kevin Bacon number.
= Fewest number of hops in a communication network.

Goal: find an algorithm that can answer these questions.

]
TUDelft



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

/ /
s L — L — ees Lo

—

BFS algorithm.
» Ly={s}.
= L, = all neighbors of L,.
= |, = all nodes that do not belong to L, or L,, and that have an edge to
a node in L.
= .., = all nodes that do not belong to an earlier layer, and that have an
edge to a node in L.

s

Q. Is there always a path for any node in L, to s?

Q. If so, what is the length of the path of a node in L; to s?

]
TUDelft



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

/ /
. S L, — L —— cee
BFS algorithm. T~ 1 = b

» Ly={s}.
= L, = all neighbors of L,.
= |, = all nodes that do not belong to L, or L,, and that have an edge to

a node in L.
= .., = all nodes that do not belong to an earlier layer, and that have an

edge to a node in L.

s

Is there always a path for any node in L; to s?
Yes, only nodes are added that have an edge to the previous node.
If so, what is the length of the path of a node in L; to s?

Exactly i.

>0 >0

]
TUDelft



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

/ — |
. S L, — L — eeooe
BFS algorithm. T~ 1 = — b

» Ly={s}.
= L, = all neighbors of L,.
= |, = all nodes that do not belong to L, or L,, and that have an edge to

a node in L.
= .., = all nodes that do not belong to an earlier layer, and that have an

edge to a node in L.

—_—

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

]
TUDelft



Breadth First Search: Analysis

Q. What is the run-time of the BFS algorithm? (1 min)

]
TUDelft



i=0; L[0]={s}
discovered[s]=true and false for all others
while (L[i] not empty) {
for (each node u in L[i])
for (each edge (u,v))
if (discovered|[v] = false) {
discovered[v] = true
add v to list L[i+1]

i=i+l

Q. What is the run-time of the BFS algorithm?
A. O(n?)
= at most n lists L[i]
= each node occurs on at most one list; outermost for loop runs < n times
= when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

2
TUDelft



i=0; L[0]={s}
discovered[s]=true and false for all others
while (L[i] not empty) {
for (each node u in L[i])
for (each edge (u,v))
if (discovered|[v] = false) {
discovered[v] = true
add v to list L[i+1]

i=i+l

Q. What is the run-time of the BFS algorithm?
A. O(n+m)
= when we consider node u, there are deg(u) incident edges (u, v)
= total time processing edges is X, deg(u) = 2m .___ cach edge (u, v) is counted
= n steps to setup discovered array exactly fwice in sum: once in
] ] deg(u) and once in deg(v)
Q. Which graph datastructure is assumed here?

2
TUDelft



Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (X, y) be an edge of G.
Then the level of x and y differ by at most 1.

S




Connected Component

Connected component. Find all nodes reachable from s.

Graph G

ey

Connected component containingnode 1 ={1, 2,3,4,5,6, 7,8 }.

Q. How many connected components are there in this graph?

]
TUDelft



Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile "
it's safe to add v

Theorem. Upon termination, R is the connected component containing s.
= BFS = explore in order of distance from s.
= DFS = explore in a different way.

]
TUDelft

1



DFS

]
TUDelft




Q. Does this remind you
of a search method
you've seen last year?

Q. How could you
implement this?

]
TUDelft

13



DFS

(Like backtracking)

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

]
TUDelft

14



