
3.2 Graph Traversal

2

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between

s and t?

s-t shortest path problem. Given two node s and t, what is the length of

the shortest path between s and t?

Applications.

 Hyves.

 Maze traversal.

 Kevin Bacon number.

 Fewest number of hops in a communication network.

Goal: find an algorithm that can answer these questions.

3

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

 L0 = { s }.

 L1 = all neighbors of L0.

 L2 = all nodes that do not belong to L0 or L1, and that have an edge to

a node in L1.

 Li+1 = all nodes that do not belong to an earlier layer, and that have an

edge to a node in Li.

Q. Is there always a path for any node in Li to s?

Q. If so, what is the length of the path of a node in Li to s?

s L1 L2 L n-1

4

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

 L0 = { s }.

 L1 = all neighbors of L0.

 L2 = all nodes that do not belong to L0 or L1, and that have an edge to

a node in L1.

 Li+1 = all nodes that do not belong to an earlier layer, and that have an

edge to a node in Li.

Q. Is there always a path for any node in Li to s?

A. Yes, only nodes are added that have an edge to the previous node.

Q. If so, what is the length of the path of a node in Li to s?

A. Exactly i.

s L1 L2 L n-1

5

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

 L0 = { s }.

 L1 = all neighbors of L0.

 L2 = all nodes that do not belong to L0 or L1, and that have an edge to

a node in L1.

 Li+1 = all nodes that do not belong to an earlier layer, and that have an

edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i

from s. There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

6

Breadth First Search: Analysis

Q. What is the run-time of the BFS algorithm? (1 min)

i = 0; L[0]={s}

discovered[s]=true and false for all others

while (L[i] not empty) {

 for (each node u in L[i])

 for (each edge (u,v))

 if (discovered[v] = false) {

 discovered[v] = true

 add v to list L[i+1]

 }

 i=i+1

}

7

Breadth First Search: Analysis

Q. What is the run-time of the BFS algorithm?

A. O(n2)

 at most n lists L[i]

 each node occurs on at most one list; outermost for loop runs n times

 when we consider node u, there are n incident edges (u, v),

and we spend O(1) processing each edge

i = 0; L[0]={s}

discovered[s]=true and false for all others

while (L[i] not empty) {

 for (each node u in L[i])

 for (each edge (u,v))

 if (discovered[v] = false) {

 discovered[v] = true

 add v to list L[i+1]

 }

 i=i+1

}

8

Breadth First Search: Analysis

Q. What is the run-time of the BFS algorithm?

A. O(n+m)

 when we consider node u, there are deg(u) incident edges (u, v)

 total time processing edges is uV deg(u) = 2m

 n steps to setup discovered array

Q. Which graph datastructure is assumed here?

i = 0; L[0]={s}

discovered[s]=true and false for all others

while (L[i] not empty) {

 for (each node u in L[i])

 for (each edge (u,v))

 if (discovered[v] = false) {

 discovered[v] = true

 add v to list L[i+1]

 }

 i=i+1

}

each edge (u, v) is counted
exactly twice in sum: once in
deg(u) and once in deg(v)

9

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G.

Then the level of x and y differ by at most 1.

L0

L1

L2

L3

10

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Q. How many connected components are there in this graph?

Graph G

11

Connected Component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.

 BFS = explore in order of distance from s.

 DFS = explore in a different way.

s

u v

R

it's safe to add v

12

DFS

13

DFS

Q. Does this remind you
of a search method
you’ve seen last year?

Q. How could you
implement this?

14

DFS

(Like backtracking)

