
4.1 Interval Partitioning

2

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Q. Is there a schedule that requires less classrooms?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

3

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

4

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of example = 3 schedule is optimal, because 3 rooms.

Q. Does there always exist a schedule equal to depth of intervals?

 If so, how to obtain such a schedule? If not, why not?

 (1 min for both)

a, b, c all contain 9:30

5

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Q. What is the worst-case running time?

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d d + 1

}

number of allocated classrooms

6

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Q. What is the worst-case running time?

Q. How to implement finding a free classroom?

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d d + 1

}

number of allocated classrooms

7

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. [Q. How to implement finding a free room?]

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d d + 1

}

number of allocated classrooms

8

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue (operations of O(log n)).

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d d + 1

}

number of allocated classrooms

9

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

10

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms we need at least d.

11

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms we need at least d.

Q. Why did classroom d open?

12

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

Q. How many incompatibilities at time sj + ? (with >0 very small)

13

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

 Since we sorted by start time, all these incompatibilities are caused by

lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small).

14

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

 Since we sorted by start time, all these incompatibilities are caused by

lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small).

 Using the key observation (ie number of classrooms needed depth)

we know that all schedules use d classrooms. ▪

This proof can be found
on on pages 123-125.

