
4.1 Interval Partitioning

2

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Q. Is there a schedule that requires less classrooms?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

3

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

4

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed  depth.

Ex: Depth of example = 3  schedule is optimal, because 3 rooms.

Q. Does there always exist a schedule equal to depth of intervals?

 If so, how to obtain such a schedule? If not, why not?

 (1 min for both)

a, b, c all contain 9:30

5

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Q. What is the worst-case running time?

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

6

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Q. What is the worst-case running time?

Q. How to implement finding a free classroom?

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

7

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. [Q. How to implement finding a free room?]

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

8

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue (operations of O(log n)).

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

9

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

10

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms  we need at least d.

11

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms  we need at least d.

Q. Why did classroom d open?

12

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms  we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

Q. How many incompatibilities at time sj + ? (with >0 very small)

13

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms  we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

 Since we sorted by start time, all these incompatibilities are caused by

lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small).

14

Interval Partitioning: Greedy Analysis

Key observation. Number of classrooms needed  depth.

Observation 2. Greedy algorithm never schedules two incompatible lectures

in the same classroom.

Theorem. Greedy algorithm for interval partitioning is optimal.

Pf. (using a structural bound)

To prove: Greedy allocates d classrooms  we need at least d.

 Classroom d opened because lecture j incompatible with d-1 others.

 Since we sorted by start time, all these incompatibilities are caused by

lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small).

 Using the key observation (ie number of classrooms needed  depth) 

we know that all schedules use  d classrooms. ▪

This proof can be found
on on pages 123-125.

