
4.1  Interval Partitioning 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 

Q.  Is there a schedule that requires less classrooms? 

Time 
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 

h 

c 

b 

a 

e 

d g 

f i 

j 

3 3:30 4 4:30 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses only 3. 

Time 
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 

h 

c 

a e 

f 

g i 

j 

3 3:30 4 4:30 

d 

b 
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Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 

contain any given time. 

 

Key observation.  Number of classrooms needed    depth. 

 

Ex:  Depth of example = 3    schedule is optimal, because 3 rooms. 

 

 

Q.  Does there always exist a schedule equal to depth of intervals? 

     If so, how to obtain such a schedule? If not, why not? 

     (1 min for both) 

 

a, b, c all contain 9:30 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Q. What is the worst-case running time? 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Q. What is the worst-case running time? 

Q. How to implement finding a free classroom?  

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.                   [Q. How to implement finding a free room?] 

 For each classroom k, maintain the finish time of the last job added. 

 Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 For each classroom k, maintain the finish time of the last job added. 

 Keep the classrooms in a priority queue (operations of O(log n) ). 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound)  
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound) 

To prove: Greedy allocates d classrooms  we need at least d. 
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound) 

To prove: Greedy allocates d classrooms  we need at least d. 

 

Q. Why did classroom d open? 
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound) 

To prove: Greedy allocates d classrooms  we need at least d. 

 

 Classroom d opened because lecture j incompatible with d-1 others. 

Q. How many incompatibilities at time sj + ? (with >0 very small) 
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound) 

To prove: Greedy allocates d classrooms  we need at least d. 

 

 Classroom d opened because lecture j incompatible with d-1 others. 

 Since we sorted by start time, all these incompatibilities are caused by 

lectures that start no later than sj. 

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small). 
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Interval Partitioning:  Greedy Analysis 

Key observation.  Number of classrooms needed    depth. 

Observation 2.  Greedy algorithm never schedules two incompatible lectures 

in the same classroom. 

 

Theorem.  Greedy algorithm for interval partitioning is optimal. 

Pf. (using a structural bound) 

To prove: Greedy allocates d classrooms  we need at least d. 

 

 Classroom d opened because lecture j incompatible with d-1 others. 

 Since we sorted by start time, all these incompatibilities are caused by 

lectures that start no later than sj. 

 Thus, we have d lectures overlapping at time sj+ (with ≥0 very small). 

 

 Using the key observation (ie number of classrooms needed    depth)   

we know that all schedules use  d classrooms.  ▪ 

This proof can be found 
on  on pages 123-125. 


