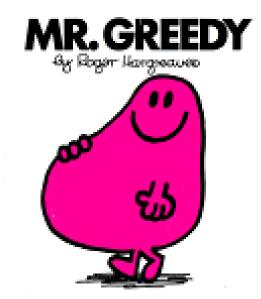
4.1 Interval Scheduling

4.1 Interval Scheduling



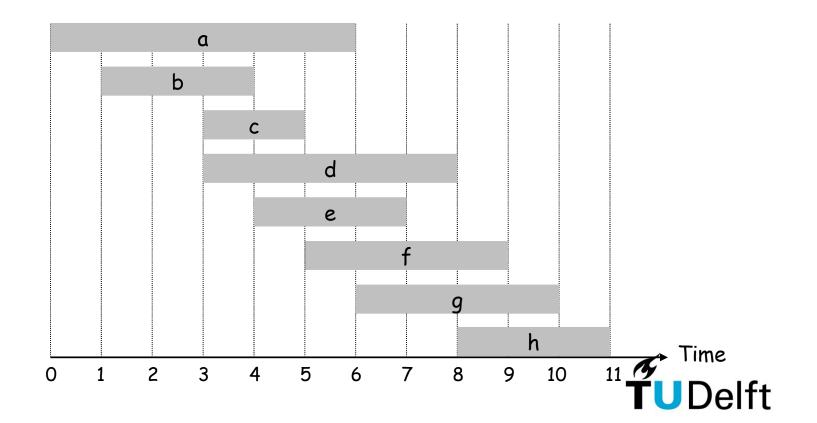
Ref: Mr. Greedy is part of the Mr. Men series of books, by Roger Hargreaves.

Interval Scheduling

Interval scheduling (activity selection)

- Job j starts at s_i and finishes at f_i.
- Two jobs compatible if they don't overlap.

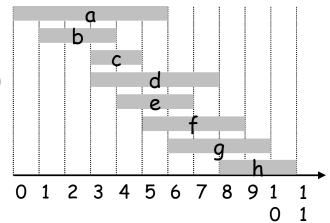
Q. What is the maximum subset of mutually compatible jobs?



Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_i.
- [Earliest finish time] Consider jobs in ascending order of finish time f_i.
- [Shortest interval] Consider jobs in ascending order of interval length f_i s_i.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_j.
 Schedule in ascending order of conflicts c_j.
- Q. Which one do you think may work? (2 min)



Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.

\checkmark^{jobs selected}

A \leftarrow \phi

for j = 1 to n {

    if (job j compatible with A)

        A \leftarrow A \cup \{j\}

}

return A
```

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j*}$.

Lemma. Greedy algorithm is sound (i.e., all jobs in A are compatible). Pf. (by induction: using an invariant)

Q. What are the basic elements of a proof by induction?

Lemma. Greedy algorithm is sound (i.e., all jobs in A are compatible).
Pf. (by induction: using an invariant)
Q. What are the basic elements of a proof by induction?
Base: (Initialization) When A=φ then all jobs in A are trivially compatible.

(Maintenance)
Hypothesis (IH): All jobs i < j in A are compatible.
Step: To prove: all jobs i < j+1 in A are compatible.

Lemma. Greedy algorithm is sound (i.e., all jobs in A are compatible).

Pf. (by induction: using an invariant)

Q. What are the basic elements of a proof by induction?

Base: (Initialization) When $A=\phi$ then all jobs in A are trivially compatible.

(Maintenance)

Hypothesis (IH): All jobs i < j in A are compatible.

Step: To prove: all jobs i < j+1 in A are compatible.

Given is that all jobs i<j in A are compatible.

If j is not in A then it follows that all jobs i < j+1 in A are compatible.

Otherwise, j was inserted in A and thus condition "job j compatible

with A" holds.

Thus in both cases all jobs i < j+1 in A are compatible.

Lemma. Greedy algorithm is sound (i.e., all jobs in A are compatible).

Pf. (by induction: using an invariant)

Q. What are the basic elements of a proof by induction?

Base: (Initialization) When $A=\phi$ then all jobs in A are trivially compatible.

(Maintenance)

Hypothesis (IH): All jobs i < j in A are compatible.

Step: To prove: all jobs i < j+1 in A are compatible.

Given is that all jobs i<j in A are compatible.

If j is not in A then it follows that all jobs i < j+1 in A are compatible.

Otherwise, j was inserted in A and thus condition "job j compatible

with A" holds.

Thus in both cases all jobs i < j+1 in A are compatible.

(Termination; sometimes you can use the negation of a while here as well) **Conclusion:** With induction (till j=n), all jobs (i<n+1) in A are compatible.

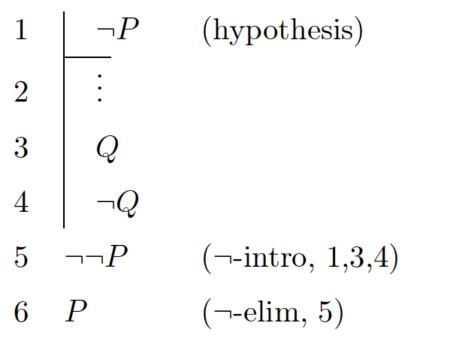
Theorem 4.3. Greedy algorithm is optimal.Pf. (by contradiction: exchange argument)Q. How do we start a proof by contradiction?

From the "Proving guide" (Blackboard)

In order to prove a proposition P by contradiction:

- 1. Write, "We use proof by contradiction."
- 2. Write, "Suppose P is false."
- 3. Deduce a logical contradiction.
- 4. Write, "This is a contradiction. Therefore, P must be true."

The equivalent structure in a Fitch proof is as follows:



Theorem 4.3. Greedy algorithm is optimal. Pf. (by contradiction: exchange argument) Suppose Greedy is not optimal.

Theorem 4.3. Greedy algorithm is optimal.

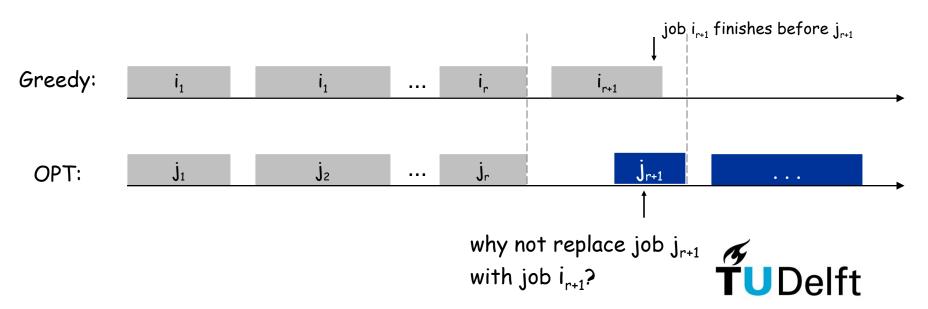
Pf. (by contradiction: exchange argument)

Suppose Greedy is not optimal.

- Q. How can we arrive at a contradiction?
- A. See where the optimal solution is different from Greedy.

Theorem 4.3. Greedy algorithm is optimal.
Pf. (by contradiction: exchange argument)
Suppose Greedy is not optimal.
Let i₁, i₂, ... i_k denote set of jobs selected by Greedy.
Let j₁, j₂, ... j_m denote set of jobs in the optimal solution.
Consider OPT solution that follows Greedy as long as possible (up to r), so

with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.



Theorem 4.3. Greedy algorithm is optimal.

Pf. (by contradiction: exchange argument)

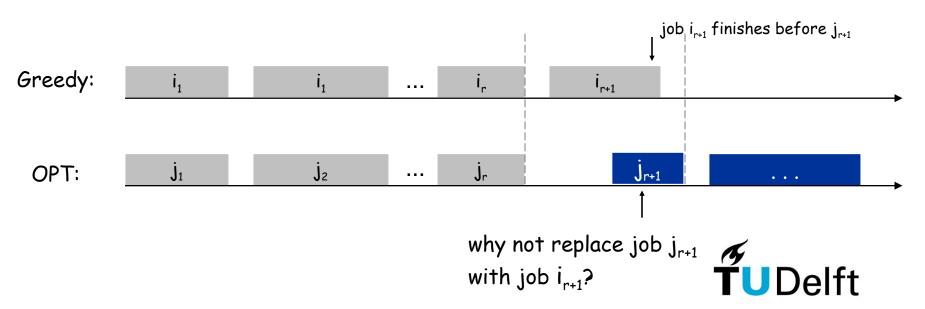
Suppose Greedy is not optimal.

Let $i_1, i_2, \dots i_k$ denote set of jobs selected by Greedy.

Let $j_1, j_2, \dots j_m$ denote set of jobs in the optimal solution.

Consider OPT solution that follows Greedy as long as possible (up to r), so with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

Q. Where is the contradiction?



Theorem 4.3. Greedy algorithm is optimal.

Pf. (by contradiction: exchange argument)

Suppose Greedy is not optimal.

Let $i_1, i_2, \dots i_k$ denote set of jobs selected by Greedy.

Let $j_1, j_2, \dots j_m$ denote set of jobs in the optimal solution.

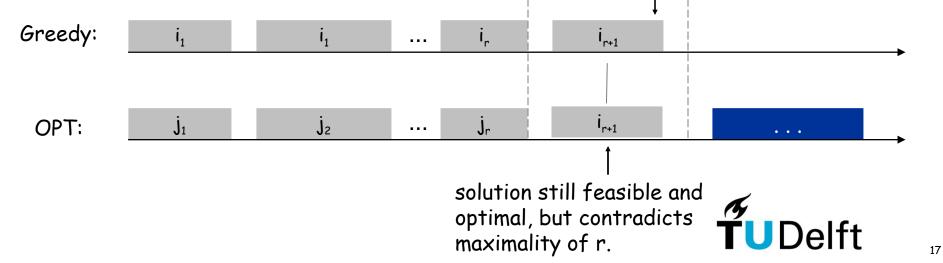
Consider OPT solution that follows Greedy as long as possible (up to r), so

with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

Consider then first choice that is different.

Change OPT to OPT': still optimal, but follows Greedy longer.

Contradiction: OPT' follows Greedy longer than OPT! • job, i_{r+1} finishes before j_{r+1}



Proof in book (p120-121) is a bit more formal, relying on a proof by induction.

Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT)

Pf. (by induction: Greedy stays ahead)

Q. What are the basic elements of a proof by induction?

Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT) Pf. (by induction: Greedy stays ahead) Base: When k=1,

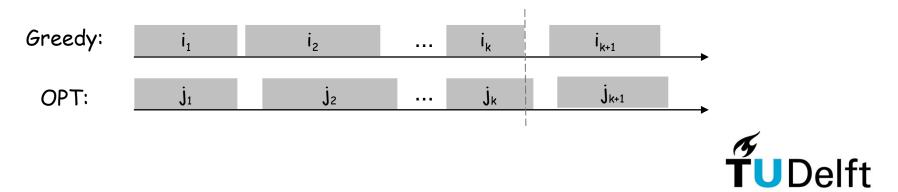
Hypothesis (IH): Suppose that for all $r \le k$ it holds that $f(i_r) \le f(j_r)$. **Step:** To prove: for all $r \le k+1$ it holds that $f(i_r) \le f(j_r)$.

Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT) Pf. (by induction: Greedy stays ahead) **Base:** When k=1, r=1, so the only job i_1 is chosen such that $f(i_1) \le f(j_1)$.

Hypothesis (IH): Suppose that for all $r \le k$ it holds that $f(i_r) \le f(j_r)$. **Step:** To prove: for all $r \le k+1$ it holds that $f(i_r) \le f(j_r)$.

Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT) Pf. (by induction: Greedy stays ahead) **Base:** When k=1, r=1, so the only job i_1 is chosen such that $f(i_1) \le f(j_1)$.

Hypothesis (IH): Suppose that for all $r \le k$ it holds that $f(i_r) \le f(j_r)$. **Step:** To prove: for all $r \le k+1$ it holds that $f(i_r) \le f(j_r)$. For all $r \le k$ this follows immediately from the IH. Consider r=k+1. Q. How can we conclude that $f(i_{k+1}) \le f(j_{k+1})$?



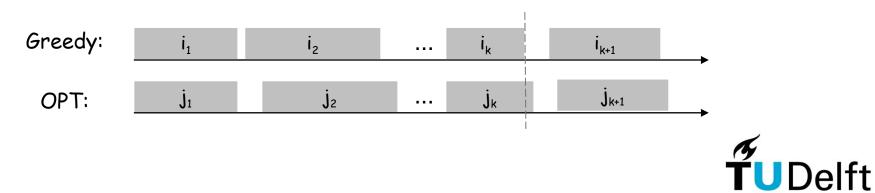
Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT) Pf. (by induction: Greedy stays ahead) **Base:** When k=1, r=1, so the only job i_1 is chosen such that $f(i_1) \le f(j_1)$.

Hypothesis (IH): Suppose that for all $r \le k$ it holds that $f(i_r) \le f(j_r)$. **Step:** To prove: for all $r \le k+1$ it holds that $f(i_r) \le f(j_r)$. For all $r \le k$ this follows immediately from the IH.

Consider r=k+1.

Q. How can we conclude that $f(i_{k+1}) \le f(j_{k+1})$?

Q. From which jobs can Greedy choose?



Lemma 4.2. For all r≤k it holds that $f(i_r) \le f(j_r)$. (i for Greedy; j for OPT) Pf. (by induction: Greedy stays ahead) **Base:** When k=1, r=1, so the only job i₁ is chosen such that $f(i_1) \le f(j_1)$.

Hypothesis (IH): Suppose that for all $r \le k$ it holds that $f(i_r) \le f(j_r)$. **Step:** To prove: for all $r \le k+1$ it holds that $f(i_r) \le f(j_r)$. For all $r \le k$ this follows immediately from the IH. Consider r=k+1. We know that $f(j_k) \le s(j_{k+1})$ (in OPT). So $f(i_k) \le s(j_{k+1})$ with the IH. So j_{k+1} can also be chosen by Greedy (i_{k+1} can be equal to j_{k+1}). Greedy chooses job with smallest end time. Therefore $f(i_{k+1}) \le f(j_{k+1})$.

This proof can be found on page 120. Requires the (brief) proof of 4.3 on page 121 to show that Greedy is optimal.

Theorem 4.3. Greedy algorithm is optimal.

```
Pf. (by contradiction)
```

```
Let i_1, i_2, \dots i_k denote set of jobs selected by Greedy.
```

```
Let j_1, j_2, \dots j_m denote set of jobs in the optimal solution.
```

Suppose Greedy is not optimal, thus k < m.

However, for all r≤k it holds that
$$f(i_r) \le f(j_r)$$
 by Lemma 4.2.

In particular, $f(i_k) \leq f(j_k)$.

But then there is a job j_{k+1} , which starts after j_k and thus i_k ends.

But then after Greedy inserted i_k , there was another compatible job left.

Contradiction with Greedy schedule having only k jobs. -

