
7.1  Network Flow 



Soviet Rail Network, 1955 

Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002. (See “External Links”) 
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Maximum Flow and Minimum Cut 

Max flow and min cut. 

 Two very rich algorithmic problems. 

 Cornerstone problems in combinatorial optimization. 

 Beautiful mathematical duality. 

 

 

Nontrivial applications / reductions. 

 Data mining. 

 Open-pit mining.  

 Project selection. 

 Airline scheduling. 

 Bipartite matching. 

 Baseball elimination. 

 Image segmentation. 

 Network connectivity. 

 

 

 

 

 

 

 

 Network reliability. 

 Distributed computing. 

 Egalitarian stable matching. 

 Security of statistical data. 

 Network intrusion detection. 

 Multi-camera scene reconstruction. 

 Many many more . . . 
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Flow network. 

 Abstraction for material flowing through the edges. 

 G = (V, E) = directed graph 

 Two distinguished nodes:  s = source, t = sink. 

 c(e) = capacity of edge e. 
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B. 

 

Def. The capacity of a cut (A, B) is: 

 

Q.  What is the capacity of the s-t cut ( {s}, V-{s} ) ? 
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B. 

 

Def. The capacity of a cut (A, B) is: 

 

Q.  What is the capacity of the s-t cut ( {s,2,3,4}, {5,6,7,t} ) ? 
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Min s-t cut problem.  Find an s-t cut of minimum capacity. (a bottleneck) 

 

Q.  What is the capacity of the minimum s-t cut? (1 min) 

Minimum Cut Problem 
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Min s-t cut problem.  Find an s-t cut of minimum capacity. (a bottleneck) 

 

Q.  What is the capacity of the minimum s-t cut? (1 min) 

Minimum Cut Problem 
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Def.  An s-t flow is a function that satisfies: 

 For each e  E:      (capacity) 

 For each v  V – {s, t}:    (conservation) 

 

Def.  The value of a flow f is:        

Q.  Is the flow below correct? 
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Def.  An s-t flow is a function that satisfies: 

 For each e  E:      (capacity) 

 For each v  V – {s, t}:    (conservation) 

 

Def.  The value of a flow f is:        

Q.  What is the value of this flow? 

(24, 30, ..)? 
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Def.  An s-t flow is a function that satisfies: 

 For each e  E:      (capacity) 

 For each v  V – {s, t}:    (conservation) 

 

Def.  The value of a flow f is:        

Q.  What is the value of this flow? 

(24, 30, ..)? 
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Max flow problem.  Find s-t flow of maximum value. 

 

Q.  What is the value of the maximum flow here? (1 min) 

 

Maximum Flow Problem 
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Max flow problem.  Find s-t flow of maximum value. 

 

Q.  What is the value of the maximum flow here? (1 min) 

 

Maximum Flow Problem 
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Towards Solving the Maximum Flow Problem 

Let f be any flow, and let (A, B) be any s-t cut. 

 

Flow value lemma.  The net flow across any cut is equal to flow leaving s. 

 

Weak duality.  For any s-t cut (A, B) we have  v(f)  cap(A, B). 

 

Corollary.  If v(f) = cap(A, B), then f is a max flow. 

 

Max-flow algorithm 

 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]   

     The value of the max flow is equal to the capacity of the min cut. 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.   

Then, the net flow sent across the cut is equal to the amount leaving s. 

Flows and Cuts 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.   

Then, the net flow sent across the cut is equal to the amount leaving s. 

 

 

 

Q.  What is the net flow sent across the cut ({s,2,3,4}, {5,6,7,t}) ?  

(24, 25, or 62) 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.   

Then, the net flow sent across the cut is equal to the amount leaving s. 

 

 

 

Q.  What is the net flow sent across the cut ({s,2,3,4}, {5,6,7,t}) ?  

(24, 25, or 62) 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.   

Then, the net flow sent across the cut is equal to the amount leaving s. 

 

 

 

Q.  What is the net flow sent across the cut ({s,3,4,7}, {2,5,6,t}) ?  

(24, 28, or 47) 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.   

Then, the net flow sent across the cut is equal to the amount leaving s. 

 

 

 

Q.  What is the net flow sent across the cut ({s,3,4,7}, {2,5,6,t}) ?  

(24, 28, or 47) 
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Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 
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Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 
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Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 
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Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 

 

 

 

 

Pf.    

 

 

 

 

 

 

 

Q.  What do we know for nodes v  s in A on:                          ? 

 

A.  Conservation of flow for v s or t:  

(from definition of flow) 



v ( f )  f (e )

e  out of  s





M

 f (e )

e  out of  A

   f (e).

e  in to A



 

veve

efef

 in to  ofout  

)()(

  



f (e )
e in to v

  f (e )
e out of v



)(  )()(

A into  ofout  

fvefef

eAe

 

s t 

A 



24 

Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 
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Flows and Cuts 

Q.  Let f be any flow, and let (A, B) be any s-t cut.  Can the value of the 

flow be more than the capacity of the cut? 
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Flows and Cuts 

Q.  Let f be any flow, and let (A, B) be any s-t cut.  Can the value of the 

flow be more than the capacity of the cut? 

A.  No. Proof on next slides. 

 

Cut capacity = 30       Flow value  30  
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. 

Q. How to start? 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 

 

 

 

 

 

 

 

Q. Then what? 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 

 

 

 

 

 

 

 

Q. Then what? 

A. Use definition of capacity 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 

 

 

 

 

 

 

 

Q. Then what? 

A. Use definition of capacity 

A. Use previous lemma (flow value lemma): 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 

 

 

 

 

 

 

 

 

Q. Why should this hold? 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 

 

 

 

 

 

 

 

 

Q. Why should this hold? 

A. Use simple arithmetic:  

 

A. Use definition (of flow): 

Flows and Cuts 



v ( f )  f (e)

e  out  of A

  f (e )

e  in to A



 f (e )

e  out  of A



 c (e)

e  out  of A



 cap( A , B )

s 

t 

A B 

 7 

6 

 8 

4 



f (e)  f (e)

e in to A

  f (e)

e out  of A


e out  of A



  



0  f (e)  c(e )

This proof can be found on page 347-348.  
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 

v(f)  cap(A, B). 

 

Pf. Let a cut (A,B) be given. 
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Certificate of Optimality 

Q.  How can we check when is a flow maximal?  
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Certificate of Optimality 

Q.  How can we check when is a flow maximal?  

A.  If there is a cut (A,B) s.t. v(f) = cap(A, B), then f is a max flow. 

 

 Value of flow = 10+4+14 = 28 
Cut capacity  = 10+8+10 = 28       Flow value  28 
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Certificate of Optimality 

Corollary.  Let f be any flow, and let (A, B) be any cut. 

If v(f) = cap(A, B), then f is a max flow. 
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Towards a Max Flow Algorithm 

Q. How to find such a max flow? (1 min) 
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Towards a Max Flow Algorithm 

Greedy algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck.  
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Towards a Max Flow Algorithm 

Greedy algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck. 

Q.  Can the flow below be improved in this way (or are we stuck)? 
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Towards a Max Flow Algorithm 

Greedy algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck. 

Q.  Is the flow below optimal? 
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Towards a Max Flow Algorithm 

Greedy algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck. 

Q. How can we fix this? (1 min) 
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Towards a Max Flow Algorithm 

Greedy algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck. 

 Also allow decreasing the flow on an edge… (“undo”) 
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Residual Graph 

Original edge:  e = (u, v)   E. 

 Flow f(e), capacity c(e). 

 

 

 

Residual edge. 

 "Undo" flow sent. 

 e = (u, v) and eR = (v, u). 

 Residual capacity: 

 

 

 

 

Residual graph:  Gf = (V, Ef ). 

 Residual edges with positive residual capacity. 

 Ef = {e  E : f(e) < c(e)}    {eR : e  E and f(e) > 0}. 

u v  17 

6 

capacity 

u v  11 

residual capacity 

 6 

residual capacity 

flow 



c f (e ) 
c(e )  f (e ) if  e  E

f (e ) if  e
R
 E







Residual graph (for Ford-Fulkerson) 
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c f (e ) 
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

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original graph with flow: 

residual graph: 
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Ford-Fulkerson Algorithm 

Ford-Fulkerson Algorithm. 

 Start with f(e) = 0 for all edges e  E. 

 Find an s-t path P in residual graph Gf where each edge has f(e)  c(e). 

 Augment flow along path P. 

 Repeat until you get stuck. 
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Ford-Fulkerson Algorithm 

s 
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4 

5 t  10 

   10 

 9 

 8 

 4 

 10 

   10  6  2 

 G: 
capacity 

Q.  How to find an augmenting path? 

A.  Depth-first search or breadth-first search from s 

file://localhost/Domain/tudelft.net/Users/mdeweerdt/Home/onderwijs/algoritmiek-in2505/2010/slides/demo/10_demo-maxflow.ppt
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Residual graph 

Q.  How can we find the minimum cut (A,B)? 
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Residual graph 

Q.  How can we find the minimum cut (A,B)? 

A.  Take A = all nodes reachable in the residual graph and B = the rest. 
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Augmenting Path Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q. Is this algorithm correct? 

 

Augment(f, c, P) { 

   b  bottleneck(P,c)  

   foreach e  P { 

      if (e  E) f(e)  f(e) + b 

      else       f(eR)  f(eR) - b 

   } 

   return f 

} 

Ford-Fulkerson(G, s, t, c) { 

   foreach e  E  f(e)  0 

   Gf  residual graph (G) 

 

   while (there exists augmenting path P from s to t) { 

      f  Augment(f, c, P) 

      update Gf 

   } 

   return f 

} 

forward edge 

reverse edge 



50 

Max-Flow Min-Cut Theorem 

Augmenting path theorem.  Flow f is a max flow iff there are no 

augmenting paths.  

 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the max 

flow is equal to the capacity of the min cut. 

 

Proof strategy.  We prove both simultaneously by showing TFAE: 

    (i) There exists a cut (A, B) such that v(f) = cap(A, B). 

   (ii) Flow f is a max flow. 

  (iii) There is no augmenting path relative to f. 

 

(i)   (ii)  Q. Where did we see this one before?  

the following are equivalent 
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Max-Flow Min-Cut Theorem 

Augmenting path theorem.  Flow f is a max flow iff there are no 

augmenting paths.  

 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the max 

flow is equal to the capacity of the min cut. 

 

Proof strategy.  We prove both simultaneously by showing TFAE: 

    (i) There exists a cut (A, B) such that v(f) = cap(A, B). 

   (ii) Flow f is a max flow. 

  (iii) There is no augmenting path relative to f. 

 

(i)   (ii)  This was the corollary to the weak duality lemma.  

 

(ii)   (iii)  We show the contrapositive, i.e. (iii)  (ii) 

 Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along this path. Thus f is not a max flow. 

Q. What do we still need to proof? 

the following are equivalent 
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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 

Q. Which cut (A,B) should we take to show that v(f) = cap(A, B)? 

 

original network 

s 

t 

A B 
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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 Let A be the set of vertices reachable from s in residual graph. 

 (A,B) is a cut, because s  A and because no path to t in Gf, t  A.  

 

Q. What do we know about v(f) then? 

original network 
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A B 
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BAcap
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




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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 Let A be the set of vertices reachable from s in residual graph. 

 (A,B) is a cut, because s  A and because no path to t in Gf, t  A.  

 

Q. What do we know about             ? 
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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 Let A be the set of vertices reachable from s in residual graph. 

 (A,B) is a cut, because s  A and because no path to t in Gf, t  A.  

 flow f(u,v) out of A is c(u,v), otherwise  

v reachable in residual graph 

 so  
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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 Let A be the set of vertices reachable from s in residual graph. 

 (A,B) is a cut, because s  A and because no path to t in Gf, t  A.  

 flow f(u,v) out of A is c(u,v), otherwise  

v reachable in residual graph 

 so  

 

Q. What do we know about             ? 
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Proof of Max-Flow Min-Cut Theorem 

(iii)   (i),  i.e. if (iii) there is no augmenting path relative to f 

                   then (i) a cut (A, B) exists such that v(f) = cap(A, B). 

Pf. 

 Let f be a flow with no augmenting paths. 

 Let A be the set of vertices reachable from s in residual graph. 

 (A,B) is a cut, because s  A and because no path to t in Gf, t  A.  

 flow f(u,v) out of A is c(u,v), otherwise  

v reachable in residual graph 

 so  

 

 flow f(u,v) into A is zero, otherwise  

u reachable in residual graph 

 so 
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This proof can be found on page 348-349.  
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Max-Flow Min-Cut Theorem 

Proof (summary). We have now shown that: 

 (i)   (ii) 

 (ii)   (iii) 

 (iii)   (i) 

 So, TFAE: 

    (i) There exists a cut (A, B) such that v(f) = cap(A, B). 

   (ii) Flow f is a max flow. 

  (iii) There is no augmenting path relative to f. 

 

Augmenting path theorem.  Flow f is a max flow iff there are no 

augmenting paths.  

Pf. (ii)  (iii)  

 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the max 

flow is equal to the capacity of the min cut. 

Pf. (i)  (ii), so cap(A, B) = v(f) is max flow. Corollary: (A, B) is min cut. 

(the following are equivalent) 

This proof can be found on page 350.  



Augment(f, c, P) { 

   b  bottleneck(P,c)  

   foreach e  P { 

      if (e  E) f(e)  f(e) + b 

      else       f(eR)  f(e) - b 

   } 

   return f 

} 

Ford-Fulkerson(G, s, t, c) { 

   foreach e  E  f(e)  0 

   Gf  residual graph (G) 

 

   while (there exists augmenting path P from s to t) { 

      f  Augment(f, c, P) 

      update Gf 

   } 

   return f 

} 

Augmenting Path Algorithm 

Q. What is the run-time complexity of one iteration of the while? 

forward edge 

reverse edge 
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Augmenting Path Algorithm 

forward edge 

reverse edge 

Augment(f, c, P) { 

   b  bottleneck(P,c)  

   foreach e  P { 

      if (e  E) f(e)  f(e) + b 

      else       f(eR)  f(e) - b 

   } 

   return f 

} 

Ford-Fulkerson(G, s, t, c) { 

   foreach e  E  f(e)  0 

   Gf  residual graph (G) 

 

   while (there exists augmenting path P from s to t) { 

      f  Augment(f, c, P) 

      update Gf 

   } 

   return f 

} 

Q. What is the run-time complexity of one iteration of the while? 

A.  O(m+n) for finding a path, O(n) to augment, so O(m) 



61 

Running Time 

Q. How many iterations until maximum flow? What does it depend upon? 

A. The value of the maximum flow, which depends on the capacities. 

 

Assumption.  All capacities are integers between 1 and c*. 

 

Invariant.  Every flow value f(e) and every residual capacity cf (e) remains 

an integer throughout the algorithm. 

 

Integrality theorem.  If all capacities are integers, then there exists a max 

flow f for which every flow value f(e) is an integer. 

Pf.  Since algorithm terminates, theorem follows from invariant.   ▪ 

 

Q.  What is the value of the maximum possible flow? 

A.  Maximum possible flow is nc*, since at most n neighbors of s.  

 

Q.  What is the time complexity of Ford-Fulkerson? 



62 

Running Time 

Q.  What is the time complexity of Ford-Fulkerson? 

 

Theorem.  F-F terminates in at most v(f*)  nc* iterations, so O(mnc*). 

 

Pf. Maximum possible flow is nc*, since at most n neighbors of s.  

Each augmentation increase value by at least 1.  

O(m) per augmenting path. ▪ 

 

Q.  What is the run time if c* = 1? 
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Running Time 

Q.  What is the time complexity of Ford-Fulkerson? 

 

Theorem.  F-F terminates in at most v(f*)  nc* iterations, so O(mnc*). 

 

Pf. Maximum possible flow is nc*, since at most n neighbors of s.  

Each augmentation increase value by at least 1.  

O(m) per augmenting path. ▪ 

 

Corollary.  If c* = 1, Ford-Fulkerson runs in O(nm) time. 

 


