### 4.5 Minimum Spanning Tree

- Minimum Spanning Tree Problem (and applications)
- Cut-property and Cycle-property (inc. proof)
- MST algorithms:
- Prim
- Kruskal and Union-Find
- Reverse-Delete


### 4.5 Minimum Spanning Tree


http://www.bccrc.ca/ci/ta01 archlevel.html (see also Blackboard - External Links)

## TUDEIft

## Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge weights $\mathrm{c}_{\mathrm{e}}$, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that

- T is a tree
- T connects all vertices, and
- the sum of edge weights is minimized



$$
T, \quad \Sigma_{e \in T} c_{e}=50
$$

Cayley's Formula. There are $\mathrm{n}^{\mathrm{n}-2}$ spanning trees of a fully connected graph.

## Applications

MST is fundamental problem with diverse applications.

- Network design.
- telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
- traveling salesperson problem, Steiner tree
- Indirect applications.
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.


## Minimum Spanning Tree

Q. Is T a minimum spanning tree?

$G=(V, E)$


T

## Minimum Spanning Tree

Q. Is T a minimum spanning tree?

$G=(V, E)$


T

## Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge weights $\mathrm{c}_{\mathrm{e}}$, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that

- T is a tree
- T connects all vertices, and
- the sum of edge weights is minimized


$\mathrm{T}, \Sigma_{e \in \mathrm{~T}} c_{e}=50$
Q. How to find such a minimum spanning tree greedily? (1 min)


## Greedy Algorithms

Kruskal's algorithm. Start with $\mathrm{T}=\varnothing$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to $T$ that has exactly one endpoint in T .
(Boruvka, 1926). Was first. (For each vertex add cheapest edge.)
Remark. All algorithms produce an MST. We will prove this for the first three above using two general properties: the cut property and the cycle property.

## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.
Q. Let $S$ be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Should e be in every MST?
A.


## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.
Q. Let $S$ be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Should e be in every MST?
A. Yes $\rightarrow$ cut property

$e$ is in every MST

## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{C}_{\mathrm{e}}$ are distinct.
Q. Let C be any cycle, does a MST exist that has all of C's edges?
A.


## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.
Q. Let C be any cycle, does a MST exist that has all of C's edges?
A. No.
Q. Which one should be not in the MST?
A.


TUDelft

## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{C}_{\mathrm{e}}$ are distinct.
Q. Let C be any cycle, does a MST exist that has all of C's edges?
A. No.
Q. Which one should be not in the MST?
A. The max cost $\rightarrow$ cycle property

$f$ is not in the MST

## Greedy Algorithms

Simplifying assumption. All edge costs $\mathrm{C}_{\mathrm{e}}$ are distinct.

Cut property. Let $S$ be any cut, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to $C$. Then the MST does not contain $f$.
Q. How to prove this? ...

$e$ is in the MST

$f$ is not in the MST

## Cut and cutset

Cut. A cut is a subset of nodes S .


$$
\text { CutS }=\{4,5,8\}
$$

## Cut and cutset

Cut. A cut is a subset of nodes $S$.

Cutset. A cutset D of a cut $S$ is the subset of (cut)edges with exactly one endpoint in $S$.


```
CutS = {4,5,8}
Cutset D = 5-6,5-7,3-4, 3-5,7-8
```


## Cycles and Cuts

Cycle. Set of edges the form $a-b, b-c, c-d, \ldots, y-z, z-a$.


Cycle $C=1-2,2-3,3-4,4-5,5-6,6-1$

## Cycle-Cut Intersection

Q. Consider the intersection of a cycle and a cutset. How many edges are there in such an intersection? (1, 2, odd, even)


Cycle $C=1-2,2-3,3-4,4-5,5-6,6-1$ Cutset D $=3-4,3-5,5-6,5-7,7-8$ Intersection $=3-4,5-6$

## Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.


```
Cycle C=1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4,5-6
```

Pf. Walk along cycle from a node $s \in S$ : for every edge leaving $S$, there should (first) be an edge to a node in $S$ before returning to $s$.


## Cut property

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S . Then the MST $\mathrm{T}^{*}$ contains e.

Pf.
Q. What proof technique to use?

## Cut property

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)

- Suppose e does not belong to T*, and let's see what happens.
- This is a contradiction.



## Cut property

Simplifying assumption. All edge costs $\mathrm{C}_{\mathrm{e}}$ are distinct.

Cut property. Let $S$ be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)
. Suppose e does not belong to $\mathrm{T}^{*}$, and let's see what happens.

- Adding e to $\mathrm{T}^{*}$ creates a cycle C in $\mathrm{T}^{*}$.
- Edge $e$ is both in the cycle $C$ and in the cutset $D$ corresponding to $S \Rightarrow$ there exists another edge, say $f$, that is in both $C$ and $D$.
- $\mathrm{T}^{\prime}=\mathrm{T}^{*} \cup\{\mathrm{e}\}-\{\mathrm{f}\}$ is also a spanning tree.
- Since $\mathrm{C}_{\mathrm{e}}<\mathrm{C}_{\mathrm{f}}, \quad \operatorname{cost}\left(\mathrm{T}^{\prime}\right)<\operatorname{cost}\left(\mathrm{T}^{*}\right)$.
. This is a contradiction.



## Cycle property

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.

Cycle property. Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST $\mathrm{T}^{*}$ does not contain f .

Pf. (1 min)
Q. What proof technique to use?

TUDelft

## Cycle property

Simplifying assumption. All edge costs $\mathrm{c}_{\mathrm{e}}$ are distinct.

Cycle property. Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST $\mathrm{T}^{*}$ does not contain f .

Pf. (by contradiction) (1 min)
. Suppose f belongs to $\mathrm{T}^{*}$, and let's see what happens.

- This is a contradiction.



## Cycle property

Simplifying assumption. All edge costs $\mathrm{C}_{\mathrm{e}}$ are distinct.

Cycle property. Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST $\mathrm{T}^{*}$ does not contain f .

Pf. (by contradiction)

- Suppose f belongs to $\mathrm{T}^{*}$, and let's see what happens.
- Deleting from T* creates a cut S in T*.
- Edge f is both in the cycle C and in the cutset D corresponding to $\mathrm{S} \Rightarrow$ there exists another edge, say e, that is in both C and D .
- $\mathrm{T}^{\prime}=\mathrm{T}^{*} \cup\{\mathrm{e}\}-\{\mathrm{f}\}$ is also a spanning tree.
- Since $\mathrm{C}_{\mathrm{e}}<\mathrm{c}_{\mathrm{f}}, \quad \operatorname{cost}\left(\mathrm{T}^{\prime}\right)<\operatorname{cost}\left(\mathrm{T}^{*}\right)$.
- This is a contradiction.



## Generic MST Algorithm (blue rule, red rule)

Blue rule: Cut property. Let $S$ be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e. Color e blue.

Red rule: Cycle property. Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST T* does not contain f . Color f red.

Generic greedy algorithm.


Apply these rules until all edges are colored.

## Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

- Initialize $\mathrm{S}=$ \{any node\}. Apply cut property to S .
- Add min cost edge in cutset corresponding to $S$ to $T$, and add one new explored node u to S .
Q. Implementation is similar to which algorithm you have already seen?



## Implementation: Prim's Algorithm

Implementation. Use a priority queue a la Dijkstra.

- Maintain set of explored nodes S.
. For each unexplored node v , maintain attachment cost $\mathrm{a}[\mathrm{v}]=$ cost of cheapest edge e[v] to a node in S .
- $O\left(n^{2}\right)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
    foreach (v \in V) a[v] \leftarrow 徝 e[v] \leftarrow\phi
    foreach (v \in V) insert v into Q
    Initialize set of explored nodes S }\leftarrow\phi,T\leftarrow
    while (Q is not empty) {
        u }\leftarrow\mathrm{ delete min element from Q
        S}\leftarrowS\cup{\mp@code{u }
        T}\leftarrowT\cup\mp@code{{ e[u]} (unless e[u] = \phi)
        foreach (edge e = (u, v) incident to u)
            if ((v & S) and (ce< a[v]))
                decrease priority a[v] to ce
                e[u]}\leftarrow
}
```


## Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
. Consider edges in ascending order of weight.

- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = ( $u$, v) into T according to cut property where $S=$ set of nodes in u's connected component in $T$.


Case 1


Case 2

## Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.
. Build set T of edges in the MST.

- Maintain set for each connected component.

```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq\ldots\leq\mp@subsup{c}{m}{}
    T}\leftarrow
    foreach (u \in V) make a set containing singleton u
    for i }\leftarrow1\mathrm{ to m
        (u,v)}\leftarrow\mp@subsup{e}{i}{
        if (u and v are in different sets) {
            T}\leftarrowT\cupT\cup{\mp@subsup{e}{i}{}
            merge the sets containing }u\mathrm{ and v
        }
    return T
}
```


## Union-Find

Union-Find.
Efficient data structure to do two operations on

- Union: merge two components
- Find: give the representative of the component
Q. How to implement efficiently?

TuDefft

## Union-Find

## Union-Find.

- Represent component by tree
- Union: merge two components
- assign each node a rank
- place root with lowest rank under highest
- increase rank of new root if equal rank

. Find: give the representative
- path compression
(eg find(g) )
- btw, do not update rank
a



## Implementation: Kruskal's Algorithm

Implementation. Using the union-find data structure.

- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find. $m \leq n^{2} \Rightarrow \log m$ is $O(\log n) \quad \underbrace{}_{\text {essentially a constant }}$

```
Kruskal(G, c) {
    Sort edges weights so that cor \leq con \leq .. \leq cm.
    T}\leftarrow
    foreach (u G V) make a set containing singleton u
    for i \leftarrow 1 to m
        (u,v)}\leftarrow\mp@subsup{e}{i}{
        u_root \leftarrow find(u)
        v_root \leftarrow find(v)
        if (u_root != v_root) {
            T\leftarrowT\cup{看}
            union( u_root, v_root )
        }
    return T
}
```


## Lexicographic Tiebreaking

Q. How to remove the assumption that all edge costs are distinct?
A.

THDelft

## Lexicographic Tiebreaking

Q. How to remove the assumption that all edge costs are distinct?
$\mathrm{A}_{1}$. Perturb all edge costs by tiny amounts to break any ties.
$\mathrm{A}_{2}$. Break ties using index.
$A_{1}$. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.
$A_{2}$. Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

```
boolean less(i, j) {
    if (cost(e ( ) < cost(e (e)) return true
    else if (cost(e}\mp@subsup{i}{i}{\prime})>\operatorname{cost( ( }\mp@subsup{j}{j}{\prime}\mathrm{ )) return false
    else if (i < j) return true
    else return false
}
```

