
4.5  Minimum Spanning Tree 

 

 Minimum Spanning Tree Problem (and applications) 

 Cut-property and Cycle-property (inc. proof) 

 MST algorithms: 

 Prim 

 Kruskal and Union-Find 

 Reverse-Delete 

 

 



2 

4.5  Minimum Spanning Tree 

http://www.bccrc.ca/ci/ta01_archlevel.html 
(see also Blackboard – External Links) 

http://www.bccrc.ca/ci/ta01_archlevel.html


3 

Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with edge 

weights ce, an MST is a subset of the edges T  E such that 

• T is a tree 

• T connects all vertices, and  

• the sum of edge weights is minimized 

 

 

 

 

 

 

 

 

 

Cayley's Formula.  There are nn-2 spanning trees of a fully connected graph. 

 

 5 

23 

10  

21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 5 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T,    eT ce = 50 

can't solve by brute force 



4 

Applications 

MST is fundamental problem with diverse applications. 

 

 Network design. 

– telephone, electrical, hydraulic, TV cable, computer, road 

 

 Approximation algorithms for NP-hard problems. 

– traveling salesperson problem, Steiner tree 

 

 Indirect applications. 

– max bottleneck paths 

– LDPC codes for error correction 

– image registration with Renyi entropy 

– learning salient features for real-time face verification 

– reducing data storage in sequencing amino acids in a protein 

– model locality of particle interactions in turbulent fluid flows 

– autoconfig protocol for Ethernet bridging to avoid cycles in a network 

 

 Cluster analysis. 



5 

Minimum Spanning Tree 

Q. Is T a minimum spanning tree? 

 5 

23 

10  

21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 5 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T 

24 



6 

Minimum Spanning Tree 

Q. Is T a minimum spanning tree? 

 5 

23 

10  

21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T 

24 



7 

Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with edge 

weights ce, an MST is a subset of the edges T  E such that 

• T is a tree 

• T connects all vertices, and  

• the sum of edge weights is minimized 

 

 

 

 

 

 

 

 

 

Q. How to find such a minimum spanning tree greedily? (1 min) 

 5 

23 

10  

21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 5 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T,    eT ce = 50 



8 

Greedy Algorithms 

Kruskal's algorithm.  Start with T =   . Consider edges in ascending order 

of cost. Insert edge e in T unless doing so would create a cycle. 

 

Reverse-Delete algorithm.  Start with T = E.  Consider edges in 

descending order of cost. Delete edge e from T unless doing so would 

disconnect T. 

 

Prim's algorithm.  Start with some root node s and greedily grow a tree T 

from s outward.  At each step, add the cheapest edge e to T that has 

exactly one endpoint in T. 

 

(Boruvka, 1926).  Was first. (For each vertex add cheapest edge.) 

 

Remark.  All algorithms produce an MST. We will prove this for the first 

three above using two general properties: the cut property and the cycle 

property. 





9 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

 

Q.  Let S be any subset of nodes, and let e be the min cost edge with 

exactly one endpoint in S.  Should e be in every MST? 

A.   

S 
e 



10 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

 

Q.  Let S be any subset of nodes, and let e be the min cost edge with 

exactly one endpoint in S.  Should e be in every MST? 

A.  Yes  cut property 

S 
e 

e is in every MST 



11 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

Q.  Let C be any cycle, does a MST exist that has all of C’s edges? 

A.   

C 



12 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

Q.  Let C be any cycle, does a MST exist that has all of C’s edges?  
A.  No. 

Q.  Which one should be not in the MST? 

A.   

C 



13 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

Q.  Let C be any cycle, does a MST exist that has all of C’s edges?  

A.  No. 

Q.  Which one should be not in the MST? 

A.  The max cost  cycle property 

f  
C 

f is not in the MST 



14 

Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cut property.  Let S be any cut, and let e be the min cost edge with exactly 

one endpoint in S.  Then the MST contains e. 

 

Cycle property.  Let C be any cycle, and let f be the max cost edge 

belonging to C.  Then the MST does not contain f. 

 

Q.  How to prove this? ... 

f  
C 

S 

e is in the MST 

e 

f is not in the MST 



15 

Cut and cutset 

Cut.  A cut is a subset of nodes S.   

 

1 
3 

8 

2 

6 

7 

4 

5 

S 

Cut S       =  { 4, 5, 8 } 
 



16 

S 

Cut and cutset 

Cut.  A cut is a subset of nodes S.   

 

Cutset.  A cutset D of a cut S is the subset of (cut)edges with exactly one 

endpoint in S. 

 

1 
3 

8 

2 

6 

7 

4 

5 

Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8 



17 

Cycles and Cuts 

 

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a.  

 

 

 

 

 

 

 

 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1 

1 
3 

8 

2 

6 

7 

4 

5 



18 

Cycle-Cut Intersection 

Q.  Consider the intersection of a cycle and a cutset. How many edges are 

there in such an intersection? (1, 2, odd, even)  

 

1 
3 

8 

2 

6 

7 

4 

5 

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 

S 



19 

Cycle-Cut Intersection 

Claim.  A cycle and a cutset intersect in an even number of edges. 

 

 

 

 

 

 

 

 

Pf.  Walk along cycle from a node s∈S: for every edge leaving S, there 

should (first) be an edge to a node in S before returning to s. 

S 

V - S 

C 

1 
3 

8 

2 

6 

7 

4 

5 

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 

S 



20 

Cut property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 

with exactly one endpoint in S. Then the MST T* contains e. 

 

Pf.   

Q. What proof technique to use? 



Cut property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 

with exactly one endpoint in S. Then the MST T* contains e. 

 

Pf.  (by contradiction) 

 Suppose e does not belong to T*, and let's see what happens. 

 

 

 

 

 

 This is a contradiction.   ▪ 
f  

 T* 

e 

S 



Cut property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 

with exactly one endpoint in S. Then the MST T* contains e. 

 

Pf.  (by contradiction) 

 Suppose e does not belong to T*, and let's see what happens. 

 Adding e to T* creates a cycle C in T*. 

 Edge e is both in the cycle C and in the cutset D corresponding to S    

there exists another edge, say f, that is in both C and D. 

 T' = T*  { e } - { f } is also a spanning tree. 

 Since ce < cf,   cost(T') < cost(T*). 

 This is a contradiction.   ▪ 
f  

 T* 

e 

S 

This proof can be found on page 145. 



23 

Cycle property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 

belonging to C. Then the MST T* does not contain f. 

 

Pf. (1 min) 

Q. What proof technique to use? 

   



Cycle property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 

belonging to C. Then the MST T* does not contain f. 

 

Pf.  (by contradiction) (1 min) 

 Suppose f belongs to T*, and let's see what happens.  

 

 

 

 

 

 This is a contradiction.   ▪ 
f  

 T* 

e 

S 



Cycle property 

Simplifying assumption.  All edge costs ce are distinct. 

 

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 

belonging to C. Then the MST T* does not contain f. 

 

Pf.  (by contradiction) 

 Suppose f belongs to T*, and let's see what happens. 

 Deleting f from T* creates a cut S in T*. 

 Edge f is both in the cycle C and in the cutset D corresponding to S    

there exists another edge, say e, that is in both C and D. 

 T' = T*  { e } - { f } is also a spanning tree. 

 Since ce < cf,   cost(T') < cost(T*). 

 This is a contradiction.   ▪ 
f  

 T* 

e 

S 

This proof can be found on page 147-148. 



26 

Generic MST Algorithm (blue rule, red rule) 

Blue rule: Cut property.  Let S be any subset of nodes, and let e be the min 

cost edge with exactly one endpoint in S. Then the MST T* contains e. 

Color e blue. 

 

Red rule: Cycle property.  Let C be any cycle in G, and let f be the max cost 

edge belonging to C. Then the MST T* does not contain f. Color f red. 

 

 

Generic greedy algorithm.  

Apply these rules until all edges are colored. 

file://localhost/Domain/tudelft.net/Users/mdeweerdt/Home/onderwijs/algoritmiek-in2505/2010/slides/demo/06_demo-mst-generic.ppt


27 

Prim's Algorithm:  Proof of Correctness 

Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959] 

 Initialize S = {any node}.   Apply cut property to S. 

 Add min cost edge in cutset corresponding to S to T, and add one new 

explored node u to S. 

 

Q.  Implementation is similar to which algorithm you have already seen? 

S 



Implementation:  Prim's Algorithm 

Prim(G, c) { 

   foreach (v  V) a[v]  ; e[v]   

   foreach (v  V) insert v into Q 

   Initialize set of explored nodes S  , T   

 

   while (Q is not empty) { 

      u  delete min element from Q 

      S  S  { u } 

      T  T  { e[u] } (unless e[u] = ) 

      foreach (edge e = (u, v) incident to u) 

          if ((v  S) and (ce < a[v])) 

             decrease priority a[v] to ce 

                   e[u]  e 

} 

Implementation.  Use a priority queue a la Dijkstra. 

 Maintain set of explored nodes S. 

 For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge e[v] to a node in S. 

 O(n2) with an array; O(m log n) with a binary heap. 

 



29 

Kruskal's Algorithm:  Proof of Correctness 

Kruskal's algorithm.  [Kruskal, 1956] 

 Consider edges in ascending order of weight. 

 Case 1:  If adding e to T creates a cycle, discard e according to cycle 

property. 

 Case 2:  Otherwise, insert e = (u, v) into T according to cut property 

where S = set of nodes in u's connected component in T.  

Case 1 

v 

u 

Case 2 

e 

e 
S 



Implementation:  Kruskal's Algorithm 

Implementation.  Use the union-find data structure. 

 Build set T of edges in the MST. 

 Maintain set for each connected component. 

 

 

are u and v in different connected components, ie, find(u)=find(v)? 

merge two components, ie, union(u,v) 

Kruskal(G, c) { 

   Sort edges weights so that c1  c2  ...  cm. 

   T   

 

   foreach (u  V) make a set containing singleton u 

 

   for i  1 to m 

      (u,v)  ei 

      if (u and v are in different sets) { 

         T  T  {ei} 

         merge the sets containing u and v 

      } 

   return T 

} 



Union-Find 

Union-Find. 

Efficient data structure to do two operations on 

 Union: merge two components 

 Find: give the representative of the component 

 

Q. How to implement efficiently? 



Union-Find 

Union-Find. 

 Represent component by tree 

 

 

 

 Union: merge two components 

– assign each node a rank 

– place root with lowest rank under highest 

– increase rank of new root if equal rank 

 

 

 

 Find: give the representative 

– path compression 

(eg find(g) ) 

– btw, do not update rank 

 

 

a 

b 

c 

d 

e 

f 

a 

b 

c 

d 

e 

f 

a 

b 

c 

d 

e 

f 

g 

g 

g 



Implementation.  Using the union-find data structure. 

 O(m log n) for sorting and  O(m  (m, n) ) for union-find. 

� 

Implementation:  Kruskal's Algorithm 

Kruskal(G, c) { 

   Sort edges weights so that c1  c2  ...  cm. 

   T   

 

   foreach (u  V) make a set containing singleton u 

 

   for i  1 to m 

      (u,v)  ei 

      u_root  find(u) 

      v_root  find(v) 

      if (u_root != v_root) { 

         T  T  {ei} 

         union( u_root, v_root ) 

      } 

   return T 

} 

m  n2  log m is O(log n) essentially a constant 

O(1) 

O(m) 

O((m, n)) 



34 

Lexicographic Tiebreaking 

Q.  How to remove the assumption that all edge costs are distinct? 

A.   



35 

Lexicographic Tiebreaking 

Q.  How to remove the assumption that all edge costs are distinct? 

A1. Perturb all edge costs by tiny amounts to break any ties.  

A2. Break ties using index. 

 

A1. Kruskal and Prim only interact with costs via pairwise comparisons.  If 

perturbations are sufficiently small, MST with perturbed costs is MST 

with original costs.  

 

 

A2. Can handle arbitrarily small perturbations implicitly by breaking ties 

lexicographically, according to index. 

boolean less(i, j) { 

   if      (cost(ei) < cost(ej)) return true 

   else if (cost(ei) > cost(ej)) return false 

   else if (i < j)               return true 

   else                          return false 

} 

e.g., if all edge costs are integers, 
perturbing cost of edge ei by i / n2 


