7.11 Project Selection

- Project Selection Problem
- Translation to Network Flow
- Correctness Proof of Translation

Project Selection

Projects with prerequisites.

can be positive or negative

- Set P of possible projects. Project v has associated revenue p_v .
 - some projects generate money: create interactive e-commerce interface, redesign web page
 - others cost money: upgrade computers, get site license
- Set of prerequisites E. If (v, w) ∈ E, can't do project v and unless also do project w. (Arrow from v to w.)
- A subset of projects A ⊆ P is feasible if the prerequisite of every project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize revenue.

Project Selection: Prerequisite Graph

Prerequisite graph.

- . Include an edge from v to w if we can't do v without also doing w.
- Q. Which project selection is infeasible: {v,w,x}, {v,x}, both, or none ?

Project Selection: Prerequisite Graph

Prerequisite graph.

- Include an edge from v to w if can't do v without also doing w.
- Q. Which project selection is infeasible: {v,w,x}, {v,x}, both, or none ?
- A. Only $\{v, x\}$ is an infeasible subset of projects, because v needs w

Project Selection

- Project v has associated revenue p_v : if $p_v > 0$: profit, $p_v < 0$ costly
- Prerequisites E: If $(v, w) \in E$, if project v then also project w.

Q*. How can we formulate this as a max-flow/min-cut problem? (1 min)
1.Do you want the max matching to be the max flow or the min cut?
2.Which nodes should be s and t? (Existing or new?)
3.Do we need more edges, what should be the direction?
4.What should be the capacities?

Min cut formulation

- such that (A, B) is min cut iff A – { s } is optimal set of projects.

Q. How to ensure that $A - \{s\}$ is feasible?

formulation: cut (A,B): A-{s}: selected projects B: unselected projects

Min cut formulation

- such that (A, B) is min cut iff A { s } is optimal set of projects.
- infinite capacity edges ensure A { s } is feasible.
- Q. How to ensure that capacity of min cut relates to profit?

A. minimize selected costly and unselected profitable projects:

Min cut formulation.

- Assign capacity ∞ to all prerequisite edges.
- Q. How to assign other capacities to ensure that

Min cut formulation.

- Assign capacity ∞ to all prerequisite edges.
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.

Claim. If (A, B) is min cut then $A - \{s\}$ is optimal set of projects.

. (i) Infinite capacity edges ensure $A - \{ s \}$ is feasible.

