6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

RNA Secondary Structure

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $\mathrm{i}<\mathrm{j}-4$.
- [Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have i < $\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal. Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Q. Are the following structures OK and why (not)?

base pair

TuDefft

RNA Secondary Structure: Examples

Q. Are the following structures OK and why (not)?

2.

sharp turn

crossing

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{j}$.

Q. What are our sub-problems?
. Finding secondary structure in: $b_{1} b_{2} \ldots b_{t-1}$.
\leftarrow OPT(t-1)
. Finding secondary structure in: $b_{t+1} b_{t+2} \ldots b_{j-1}$. $\quad \leftarrow$ other type of sub-problem So just a formula for OPT(j) is not enough!
Q. Which parameters do you need to express any sub-problem?
Q. And how to express the maximum number of pairs in terms of these sub-problems? (1 min)

Dynamic Programming Over Intervals

Notation. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
Q. What cases can we distinguish?

Dynamic Programming Over Intervals

Notation. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
Q. What cases can we distinguish?
A.

1. j cannot be involved in a pair, because i and j are too close
2. we choose to not pair j
3. we choose to pair j with another base t (which is its Watson-Crick complement and is more than 4 bases away)

Dynamic Programming Over Intervals

Recursively define value of optimal solution:
Notation. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
.Case 1. If $\mathrm{i} \geq \mathrm{j}-4$ (i and j too close)
Q. How many base pairs are possible in this case?
.Case 2. We choose to let base b_{j} not be involved in a pair.
.Case 3. We choose to let base b_{j} pair with b_{t} for some $i \leq t<j-4$.

Dynamic Programming Over Intervals

Recursively define value of optimal solution:
Notation. OPT($\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
.Case 1. If $\mathrm{i} \geq \mathrm{j}-4$ (i and j too close)

- OPT $(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
.Case 2. We choose to let base b_{j} not be involved in a pair.
Q. How many base pairs are possible in this case?
.Case 3. We choose to let base b_{j} pair with b_{t} for some $i \leq t<j-4$.

Dynamic Programming Over Intervals

Recursively define value of optimal solution:
Notation. OPT($\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
.Case 1. If $\mathrm{i} \geq \mathrm{j}-4$ (i and j too close)

- OPT($\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
.Case 2. We choose to let base b_{j} not be involved in a pair.

$$
-\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)
$$

.Case 3. We choose to let base b_{j} pair with b_{t} for some $i \leq t<j-4$.
Q. How many base pairs are possible in this case?

Dynamic Programming Over Intervals

Recursively define value of optimal solution:
Notation. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
.Case 1. If $\mathrm{i} \geq \mathrm{j}-4$ (i and j too close)

- OPT $(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
.Case 2. We choose to let base b_{j} not be involved in a pair.
$-\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)$
.Case 3. We choose to let base b_{j} pair with b_{t} for some $i \leq t<j-4$.
- non-crossing constraint decouples resulting sub-problems
$-\operatorname{OPT}(\mathrm{i}, \mathrm{j})=1+\max _{\mathrm{t}}\{\operatorname{OPT}(\mathrm{i}, \mathrm{t}-1)+\operatorname{OPT}(\mathrm{t}+1, \mathrm{j}-1)\}$
take max over \dagger such that $i \leq t<j-4$ and b_{+}and b_{j} are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

Dynamic Programming Over Intervals

Recursively define value of optimal solution:
Notation. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.
.Case 1. If $\mathrm{i} \geq \mathrm{j}-4$ (i and j too close)

- OPT($\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
.Case 2. We choose to let base b_{j} not be involved in a pair.
- OPT(i, j) = OPT(i, j-1)
.Case 3. We choose to let base b_{j} pair with b_{t} for some $i \leq t<j-4$.
- non-crossing constraint decouples resulting sub-problems

$$
- \text { OPT }(\mathrm{i}, \mathrm{j})=1+\max _{\mathrm{t}}\{\text { OPT }(\mathrm{i}, \mathrm{t}-1)+\text { OPT }(\mathrm{t}+1, \mathrm{j}-1)\}
$$

take max over \dagger such that $\mathrm{i} \leq t<j-4$ and b_{+}and b_{j} are Watson-Crick complements
$O P T(i, j)= \begin{cases}0 & \text { if } 1 \geq j-4 \\ \max \left\{O P T(i, j-1), 1+\max _{i \leq t<j-4 \text { such that }{ }_{t}: \mathrm{b}_{j} \text { is a pair }}\{O P T(i, t-1)+O P T(t+1, j-1)\}\right\} \text { otherwise }\end{cases}$

Bottom Up Dynamic Programming Over Intervals

Q. In what order to solve the sub-problems? (1 min)
A.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems? (1 min)
A. OPT(i, j) requires -OPT(i,i) until OPT(i,j-1) -OPT(i+1,j-1) until OPT(j-3,j-1)
Compute value of optimal solution iteratively.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems? (1 min)
A. OPT(i, j) requires
-OPT(i,i) until OPT(i,j-1)
-OPT(i+1,j-1) until OPT(j-3,j-1)
Compute value of optimal solution iteratively.


```
RNA ( }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{n}{}) 
    for k = 5, 6, .., n-1
        for i = 1, 2, .., n-k
        j = i + k
        Compute M[i, j]
    return M[1, n] using recurrence
}
```

Q. What is the running time?
A.

$O P T(i, j)= \begin{cases}0 & \text { if } \mathrm{i} \geq j-4 \\ \max \left\{O P T(i, j-1), 1+\max _{i \leq t<j-4 \text { such that } \mathrm{b}_{,}: \mathrm{b}_{j} \text { is a pair }}\{O P T(i, t-1)+O P T(t+1, j-1)\}\right\} & \text { otherwise }\end{cases}$

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems? (1 min)
A. OPT(i, j) requires
-OPT(i,i) until OPT(i,j-1)
-OPT(i+1,j-1) until OPT(j-3,j-1)
Compute value of optimal solution iteratively.


```
RNA ( }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{n}{}) 
    for k = 5, 6, .., n-1
        for i = 1, 2, .., n-k
        j = i + k
        Compute M[i, j]
    return M[1, n] using recurrence
}
```

Q. What is the running time?
A. $O\left(n^{3}\right)$.

$O P T(i, j)= \begin{cases}0 & \text { if } \mathrm{i} \geq j-4 \\ \max \left\{O P T(i, j-1), 1+\max _{i \leq t<j-4 \text { such that } \mathrm{b}_{,}: \mathrm{b}_{j} \text { is is a pair }}\{O P T(i, t-1)+O P T(t+1, j-1)\}\right\} & \text { otherwise }\end{cases}$

Dynamic Programming Over Intervals: Finding a Solution

Construct optimal solution from computed information.

```
Run RNA()
Run Find-Solution(1,n)
Find-Solution(i,j) {
    if (i = 0 or w = 0)
        output nothing
    else if ( M[i,w] = M[i-1, w] )
        Find-Solution(i-1,w)
    else
        print i
        Find-Solution(i-1,w-w w)
}
```


Dynamic Programming Summary

Recipe.

1. Characterize structure of problem.
2. Recursively define value of optimal solution.
3. Compute value of optimal solution.
4. Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over intervals (more subproblems): RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

