
6.5 RNA Secondary Structure

http://xray.bmc.uu.se/henke/Practical_4/practical_4.html

2

RNA Secondary Structure

RNA. String B = b1b2bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back and

form base pairs with itself. This structure is essential for understanding

behavior of molecule.

G

U

C

A

G A

A

G

C G

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

3

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:

 [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick

complement: A-U, U-A, C-G, or G-C.

 [No sharp turns.] The ends of each pair are separated by at least 4

intervening bases. If (bi, bj)  S, then i < j - 4.

 [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2bn, find a secondary structure S

that maximizes the number of base pairs.

approximate by number of base pairs

4

RNA Secondary Structure: Examples

Q. Are the following structures OK and why (not)?

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

G

G

1. 2. 3.

base pair

5

RNA Secondary Structure: Examples

Q. Are the following structures OK and why (not)?

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossing ok

G

G

4

base pair

1. 2. 3.

6

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring b1b2bj.

Q. What are our sub-problems?

 Finding secondary structure in: b1b2bt-1.

 Finding secondary structure in: bt+1bt+2bj-1.

So just a formula for OPT(j) is not enough!

Q. Which parameters do you need to express any sub-problem?

Q. And how to express the maximum number of pairs in terms of these

sub-problems? (1 min)

1 t j

match bt and bj

OPT(t-1)

other type of sub-problem

7

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Q. What cases can we distinguish?

8

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Q. What cases can we distinguish?

A.

1. j cannot be involved in a pair, because i and j are too close

2. we choose to not pair j

3. we choose to pair j with another base t (which is its Watson-Crick

complement and is more than 4 bases away)

9

Dynamic Programming Over Intervals

Recursively define value of optimal solution:

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Case 1. If i  j – 4 (i and j too close)

Q. How many base pairs are possible in this case?

Case 2. We choose to let base bj not be involved in a pair.

Case 3. We choose to let base bj pair with bt for some i  t < j - 4.

10

Dynamic Programming Over Intervals

Recursively define value of optimal solution:

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Case 1. If i  j – 4 (i and j too close)

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2. We choose to let base bj not be involved in a pair.

Q. How many base pairs are possible in this case?

Case 3. We choose to let base bj pair with bt for some i  t < j - 4.

11

Dynamic Programming Over Intervals

Recursively define value of optimal solution:

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Case 1. If i  j – 4 (i and j too close)

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2. We choose to let base bj not be involved in a pair.

– OPT(i, j) = OPT(i, j-1)

Case 3. We choose to let base bj pair with bt for some i  t < j - 4.

Q. How many base pairs are possible in this case?

12

Dynamic Programming Over Intervals

Recursively define value of optimal solution:

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Case 1. If i  j – 4 (i and j too close)

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2. We choose to let base bj not be involved in a pair.

– OPT(i, j) = OPT(i, j-1)

Case 3. We choose to let base bj pair with bt for some i  t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i  t < j-4 and
bt and bj are Watson-Crick complements

13

Dynamic Programming Over Intervals

Recursively define value of optimal solution:

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bibi+1bj.

Case 1. If i  j – 4 (i and j too close)

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2. We choose to let base bj not be involved in a pair.

– OPT(i, j) = OPT(i, j-1)

Case 3. We choose to let base bj pair with bt for some i  t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

take max over t such that i  t < j-4 and
bt and bj are Watson-Crick complements



OPT (i, j) 

0 if i  j  4

max OPT (i, j  1),1  max
i t j 4 such that b t :b j is a pair

OPT (i, t  1)  OPT (t  1, j  1) 








otherwise








14

Bottom Up Dynamic Programming Over Intervals

Q. In what order to solve the sub-problems? (1 min)

A.

j

C

G

G

C

A

A

G

U

U



OPT (i, j) 

0 if i  j  4

max OPT (i, j  1),1  max
i t j 4 such that b t :b j is a pair

OPT (i, t  1)  OPT (t  1, j  1) 








otherwise








Q. What order to solve the sub-problems? (1 min)

A. OPT(i,j) requires

•OPT(i,i) until OPT(i,j-1)

•OPT(i+1,j-1) until OPT(j-3,j-1)

Compute value of optimal solution iteratively.

15

Bottom Up Dynamic Programming Over Intervals

C

G

G

C

A

A

G

U

U



OPT (i, j) 

0 if i  j  4

max OPT (i, j  1),1  max
i t j 4 such that b t :b j is a pair

OPT (i, t  1)  OPT (t  1, j  1) 








otherwise








RNA(b1,…,bn) {

 for k = 5, 6, …, n-1

 for i = 1, 2, …, n-k

 j = i + k

 Compute M[i, j]

 return M[1, n]

}

16

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems? (1 min)

A. OPT(i,j) requires

•OPT(i,i) until OPT(i,j-1)

•OPT(i+1,j-1) until OPT(j-3,j-1)

Compute value of optimal solution iteratively.

Q. What is the running time?

A.

using recurrence

0 0 0

0 0

0 2

3

4

1

i

6 7 8 9

j

C

G

G

C

A

A

G

U

U



OPT (i, j) 

0 if i  j  4

max OPT (i, j  1),1  max
i t j 4 such that b t :b j is a pair

OPT (i, t  1)  OPT (t  1, j  1) 








otherwise








17

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems? (1 min)

A. OPT(i,j) requires

•OPT(i,i) until OPT(i,j-1)

•OPT(i+1,j-1) until OPT(j-3,j-1)

Compute value of optimal solution iteratively.

Q. What is the running time?

A. O(n3).

RNA(b1,…,bn) {

 for k = 5, 6, …, n-1

 for i = 1, 2, …, n-k

 j = i + k

 Compute M[i, j]

 return M[1, n]

}

using recurrence

0 0 0

0 0

0 2

3

4

1

i

6 7 8 9

j

C

G

G

C

A

A

G

U

U



OPT (i, j) 

0 if i  j  4

max OPT (i, j  1),1  max
i t j 4 such that b t :b j is a pair

OPT (i, t  1)  OPT (t  1, j  1) 








otherwise








18

Dynamic Programming Over Intervals: Finding a Solution

Construct optimal solution from computed information.

Run RNA()

Run Find-Solution(1,n)

Find-Solution(i,j) {

 if (i = 0 or w = 0)

 output nothing

 else if (M[i,w] = M[i-1, w])

 Find-Solution(i-1,w)

 else

 print i

 Find-Solution(i-1,w-wi)

}

19

Dynamic Programming Summary

Recipe.

1. Characterize structure of problem.

2. Recursively define value of optimal solution.

3. Compute value of optimal solution.

4. Construct optimal solution from computed information.

Dynamic programming techniques.

 Binary choice: weighted interval scheduling.

 Multi-way choice: segmented least squares.

 Adding a new variable: knapsack.

 Dynamic programming over intervals (more subproblems): RNA

secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

