
4.2  Scheduling to Minimize Maximum Lateness 



Scheduling to Minimizing Maximum Lateness 

Minimizing lateness problem. 

 Single resource processes one job at a time. 

 Job j requires tj units of processing time and is due at time dj. 

 

 If j starts at time sj, it finishes at time fj = sj + tj.  

 Lateness:  j = max { 0,  fj - dj }. 

 Goal:  schedule all jobs to minimize maximum lateness L = max j. 

 

 

Ex: 
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d1 = 1 d2 = 3 
Q. Which schedule is better? 
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lateness = 2 



Scheduling to Minimizing Maximum Lateness 

Minimizing lateness problem. 

 Single resource processes one job at a time. 

 Job j requires tj units of processing time and is due at time dj. 

 

 If j starts at time sj, it finishes at time fj = sj + tj.  

 Lateness:  j = max { 0,  fj - dj }. 

 Goal:  schedule all jobs to minimize maximum lateness L = max j. 
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deadline 

0 1 2 3 4 5 6 

d1 = 1 d2 = 3 
Q. Which schedule is better? 
A. The lower; lateness 2. 
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lateness = 2 
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Scheduling to Minimizing Maximum Lateness 

Minimizing lateness problem. 

 Single resource processes one job at a time. 

 Job j requires tj units of processing time and is due at time dj. 

 

 If j starts at time sj, it finishes at time fj = sj + tj.  

 Lateness:  j = max { 0,  fj - dj }. 

 Goal:  schedule all jobs to minimize maximum lateness L = max j. 

 

 

Ex: 
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Minimizing Maximum Lateness:  Greedy Algorithms 

Greedy template.  Consider jobs in some order.  

 

 [Shortest processing time first]  Consider jobs in ascending order of 

processing time tj (least work first). 

 

 

 [Earliest deadline first]  Consider jobs in ascending order of deadline dj 

(nearest deadline). 

 

 

 [Smallest slack]  Consider jobs in ascending order of slack dj – tj (least 

time to start to make deadline). 

 

 

Q.  Which one do you think may work? (1 min) 
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Greedy template.  Consider jobs in some order.  

 

 [Shortest processing time first]  Consider jobs in ascending order of 

processing time tj (least work first). 

 

 

 

 

 

 

 [Smallest slack]  Consider jobs in ascending order of slack dj - tj  

 (least time to start to make deadline). 

counterexample 

counterexample 
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Minimizing Maximum Lateness:  Greedy Algorithms 
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Sort n jobs by deadline so that d1  d2  …  dn 

 

t  0 

for j = 1 to n 

 Assign job j to interval [t, t + tj]: 

  sj  t 

  fj  t + tj 
 t  t + tj 

output intervals [sj, fj] 

Minimizing Maximum Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Minimizing Maximum Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 

 

 

 

 

 

 

 

 

 

 

 

 

Observation. The greedy schedule has no idle time. 
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Minimizing Maximum Lateness: No Idle Time 

Observation.  There exists an optimal schedule with no idle time. 

 

 

 

 

 

 

 

 

 

Q*.  How to prove that earliest-deadline-first greedy algorithm is optimal? 
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Minimizing Maximum Lateness: No Idle Time 

Observation.  There exists an optimal schedule with no idle time. 

 

 

 

 

 

 

 

 

 

Q*.  How to prove that earliest-deadline-first greedy algorithm is optimal? 

 

A.  Idea of proof: exchange argument: 

 Take an optimal schedule. 

 Change into greedy schedule without losing optimality…. but how? 

  

0 1 2 3 4 5 6 

d = 4 d = 6 

7 8 9 10 11 

d = 12 

0 1 2 3 4 5 6 

d = 4 d = 6 

7 8 9 10 11 

d = 12 



Towards proving greedy is optimal 

Idea. Change optimal schedule to greedy without losing optimality. 

 

 

 

 

 

 

Problems to solve first: 

• What do we know about the greedy schedule? 

• How can we change the optimal to be more like that without losing 

optimality? 

11 

Greedy 

Optimal 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

We’ll now study a number of properties of such an inversion. 

 

Q.  How many inversions can a schedule from our Greedy algorithm have? 

(0, 1, or more than 1) 

 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

 

Q. What is the difference in maximum lateness between two schedules 

without inversions and without idle time? (1 min) 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

 

Q. What is the difference in maximum lateness between two schedules 

without inversions and without idle time? 

Pf.  

Only difference is an “inversion” of i and j with equal deadline (di=dj). 

Maximum lateness of i and j is only influenced by last job (fi - di). 

Maximum lateness of i and j is the same if i and j are swapped. 

 

i j before swap 

inversion 

i j 

i j 

S 

S’ 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

Observation.  All schedules without inversions have same lateness. 

 

Q.  If a schedule (with no idle time) has an inversion, how can we find it? 

 

 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

Observation.  All schedules without inversions have same lateness. 

 

Observation.  If a schedule (with no idle time) has an inversion, then it has 

one with a pair of inverted jobs scheduled consecutively. 

Pf. 

Q. How do we proof “If …, then …” ? 

 

 

 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

Observation.  All schedules without inversions have same lateness. 

 

Observation.  If a schedule (with no idle time) has an inversion, then it has 

one with a pair of inverted jobs scheduled consecutively. 

Pf. 

 Suppose there is an inversion.  

 … 

 

   … going through schedule, at some point deadline decreases. 

 

 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Observation.  Greedy schedule has no inversions.  

Observation.  All schedules without inversions have same lateness. 

 

Observation.  If a schedule (with no idle time) has an inversion, then it has 

one with a pair of inverted jobs scheduled consecutively. 

Pf. 

 Suppose there is an inversion.  

 There is a pair of jobs i and j such that: di < dj but j scheduled before i. 

 Walk through the schedule from j to i.  

 Increasing deadlines (= no inversions), at some point deadline decreases. 

 

 

i j before swap 

inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Q.  What happens to the number of inversions when we swap two 

adjacent, inverted jobs? (reduces, stays equal, increases) 

Q.  Can we swap two adjacent, inverted jobs without increasing the 

maximum lateness? 

 

i j 

i j 

before swap 

after swap 

f'j 

fi 
inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Claim.  Swapping two adjacent, inverted jobs reduces the number of 

inversions by one and does not increase the maximum lateness.  

 

Pf.  

 

i j 

i j 

before swap 

after swap 

f'j 

fi 
inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Claim.  Swapping two adjacent, inverted jobs reduces the number of 

inversions by one and does not increase the maximum lateness. 

 

Pf.  Let   be the max lateness before the swap, and let  ' be it afterwards. 

 Q. What happens with the lateness of other jobs? 

 Q. What happens with the lateness of i? 

 Q. What happens with the lateness of j? 

i j 

i j 

before swap 

after swap 

f'j 

fi 
inversion 
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Minimizing Maximum Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 

di < dj but j scheduled before i. 

 

 

 

 

Claim.  Swapping two adjacent, inverted jobs reduces the number of 

inversions by one and does not increase the maximum lateness. 

 

Pf.  Let   be the max lateness before the swap, and let  ' be it afterwards. 

  'k = k for all k  i, j  

 (lateness other jobs the same) 

  'i  i   

(new lateness for i smaller) 

 If job j is late: 

i j 
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fi 
inversion 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Idea of proof:  

 Suppose S is not optimal. 

 Take a specific optimal schedule S*. 

 Change to look like greedy schedule (less inversions) without losing 

optimality. 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Suppose S is not optimal. 

Define S* to be an optimal schedule that has the fewest number of 

inversions (of all optimal schedules) and has no idle time.  

Clearly S≠S*. 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Suppose S is not optimal. 

Define S* to be an optimal schedule that has the fewest number of 

inversions (of all optimal schedules) and has no idle time.  

Clearly S≠S*. Case analysis: 

 If S* has no inversions  

 If S* has an inversion 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Suppose S is not optimal. 

Define S* to be an optimal schedule that has the fewest number of 

inversions (of all optimal schedules) and has no idle time.  

Clearly S≠S*. Case analysis: 

 If S* has no inversions. Q. How can we derive a contradiction? 

 If S* has an inversion 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Suppose S is not optimal. 

Define S* to be an optimal schedule that has the fewest number of 

inversions (of all optimal schedules) and has no idle time.  

Clearly S≠S*. 

 If S* has no inversions, then LS = LS*. Contradiction. 

 If S* has an inversion, Q. How can we derive a contradiction? 

Greedy has no inversions. 

All schedules without 
inversions have same 
lateness. 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  (by contradiction) 

Suppose S is not optimal. 

Define S* to be an optimal schedule that has the fewest number of 

inversions (of all optimal schedules) and has no idle time.  

Clearly S≠S*. 

 If S* has no inversions, then maxl(S) = maxl(S*). Contradiction. 

 If S* has an inversion, let i-j be an adjacent inversion. 

– swapping i and j does not increase the maximum lateness and strictly 

decreases the number of inversions 

– this contradicts definition of S*  

So S is an optimal schedule. ▪ 

Greedy has no inversions. 

All schedules without 
inversions have same 
lateness. 

This proof can be found 
on pages 128-131. 
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Greedy Analysis Strategies 

Greedy algorithm stays ahead.  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's.   

 

 

Exchange argument.  Gradually transform an optimal solution to the one 

found by the greedy algorithm without hurting its quality.  

 

 

Structural.  Discover a simple "structural" bound asserting that every 

possible solution must have a certain value. Then show that your algorithm 

always achieves this bound. 

 

 

Q. Which strategy did we use for the problems in this chapter (interval 

scheduling, interval partitioning, minimizing lateness) ? 
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Greedy Analysis Strategies 

Greedy algorithm stays ahead.  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's.  

[Interval scheduling] 

 

Exchange argument.  Gradually transform an optimal solution to the one 

found by the greedy algorithm without hurting its quality.  [Minimizing 

lateness, Interval scheduling] 

 

Structural.  Discover a simple "structural" bound asserting that every 

possible solution must have a certain value. Then show that your algorithm 

always achieves this bound. [Interval partitioning] 
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Example exam exercise 

Planning a mini-triathlon: 

1. swim 20 laps (one at a time) 

2. bike 10 km (can be done simultaneously) 

3. run 3 km (can be done simultaneously) 

expected times are given for each contestant 

 

Def. The completion time is the earliest time all contestants are finished. 

Q. In what order should they start to minimize the completion time? 

Q. Proof that this order is optimal (minimal). 

 

Ex. 

bj 5 

sj 3 

1 

4 

2 

2 

6 

4 

3 

time required for swimming 

rj 3 3 3 

time required for biking 

time required for running 

contestant 

Come to the instruction (Friday 13:45) if you do not know how to answer this. 



Variant: Scheduling to Minimizing Total Lateness 

Minimizing total lateness problem. 

 Single resource processes one job at a time. 

 Job j requires tj units of processing time and is due at time dj. 

 

 If j starts at time sj, it finishes at time fj = sj + tj.  

 Lateness:  j = max { 0,  fj - dj }. 

 Goal:  schedule all jobs to minimize total lateness L = Σjj. 

 

 

Ex: 

0 1 2 3 4 5 6 

d2 = 3 d1 = 1 

dj 1 

tj 3 

1 

3 

2 

2 

time required  

deadline 

0 1 2 3 4 5 6 

d1 = 1 d2 = 3 

job number 

total lateness = 0+4 

total lateness = 2+2 

No polynomial algorithm can 
compute optimal schedule 
(unless P=NP) 
(see Master’s course Advanced Algorithms) 


