6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
Foundational problem in statistic and numerical analysis. Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
Q. How to find a line $y=a x+b$ that fits these points?

Segmented Least Squares

Least squares.

Foundational problem in statistic and numerical analysis.
Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
Q. How to find a line $y=a x+b$ that fits these points?

Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution. Calculus $\Rightarrow \mathrm{min}$ error is achieved when

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented Least Squares

Segmented least squares.
Points lie roughly on a sequence of several line segments. Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{1}<x_{2}<\ldots<x_{n}$ find a sequence of line segments that minimizes $f(x)$.
Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?

TUDelft

Segmented Least Squares

Segmented least squares.
Points lie roughly on a sequence of several line segments. Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{1}<x_{2}<\ldots<x_{n}$ find a sequence of line segments that minimizes:

- the sum of the sums of the squared errors e in each segment
- the number of lines L

Tradeoff function: e + c L, for some constant c > 0 .

TUDelft

Dynamic Programming: Multiway Choice

Notation.
$\operatorname{OPT}(\mathrm{j})=$ minimum cost for points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{j}}$.
$e(i, j)=$ minimum sum of squared errors for points $p_{i}, p_{i+1}, \ldots, p_{j}$.
Reason backward, computing OPT(j) using subproblems
Q. How can value of OPT(j) be expressed based on subproblems? (1 min)
Q. What are the options here?

TUDelft

Dynamic Programming: Multiway Choice

Notation.
$\operatorname{OPT}(j)=$ minimum cost for points $p_{1}, p_{2}, \ldots, p_{j}$.
$e(i, j)=$ minimum sum of squared errors for points $p_{i}, p_{i+1}, \ldots, p_{j}$.
Reason backward, computing OPT(j) using subproblems
Q. How can value of OPT(j) be expressed based on subproblems? (1 min)
Q. What are the options here?
A. The start i of the last segment $(1 \leq \mathrm{i} \leq \mathrm{j})$.

Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
Cost $=\mathrm{e}(\mathrm{i}, \mathrm{j})+\mathrm{c}+$ OPT(i-1).

Dynamic Programming: Multiway Choice

OPT(j) call graph

TuDeftr

Dynamic Programming: Multiway Choice

Notation.
$\operatorname{OPT}(\mathrm{j})=$ minimum cost for points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{j}}$.
$e(i, j)=$ minimum sum of squared errors for points $p_{i}, p_{i+1}, \ldots, p_{j}$.
Reason backward, computing OPT(j) using subproblems
Q. How can value of OPT(j) be expressed based on subproblems? (1 min)
Q. What are the options here?
A. The start i of the last segment.

Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
Cost $=\mathrm{e}(\mathrm{i}, \mathrm{j})+\mathrm{c}+$ OPT(i-1).
$\operatorname{OPT}(j)= \begin{cases}0 & \text { if } j=0 \\ \min _{1 \leq j \leq j}\{\underbrace{e(i, j)+c+O P T(i-1)\}} & \text { otherwise }\end{cases}$

Choose $\mathrm{i} \in[1, \mathrm{j}] \quad$ Cost of this choice

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
                compute the least square error e }\mp@subsup{i}{ij}{}\mathrm{ for
                the segment }\mp@subsup{p}{i}{},\ldots,\mp@subsup{p}{j}{
    for j = 1 to n
        M[j] = min
    return M[n]
}
```

Q. What is the running time? (1 min)

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
            compute the least square error e }\mp@subsup{i}{ij}{}\mathrm{ for
            the segment p pi,\ldots, p p
    for j = 1 to n
        M[j] = min
    return M[n]
}
```

Q. What is the running time? (1 min)
A. $O\left(n^{3}\right)$. (but can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics) Bottleneck = initialization: computing $\mathrm{e}(\mathrm{i}, \mathrm{j})$ for $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs, $\mathrm{O}(\mathrm{n})$ per pair using previous formula.

Example exam exercise

6.5 (Chinese) word segmentation problem

Given a string x of letters $x_{1} x_{2} \ldots x_{n}$ give an efficient algorithm to split x into words (substrings) such that the sum of the quality of these words is maximized.

Example. "mogenzeslapen":
quality(mo, gen, ze, sla, pen) = 7
quality(mogen, ze, slapen) $=10$

word	quality
mogen	4
enz	1
gen	2
sla	2
pen	2
slapen	5
ze	1
en	1

rules for this example: - number of letters-1 - punish uncommon words25

1

