6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

First model the problem...

Q. How can we measure the distance?

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

String Similarity

How similar are two strings?

- ocurrance
- occurrence

First model the problem...

- Q. How can we measure the distance?
- A. Idea: best of all possibilities
- Penalty for mismatches
 - (depending on characters)
- Penalty for gaps

Minimize total penalty

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Spelling suggestions in document editor.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- . Gap penalty δ ; mismatch penalty α_{pq} of chars p and q.
- Cost = sum of gap and mismatch penalties.

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ find *alignment M* of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

Sequence Alignment

Q. CTACCG VS. TACATG. Suppose all a=1 for all mismatches and $\delta=1$, what then is cost of M = {x₂-y₁, x₃-y₂, x₄-y₃, x₅-y₄, x₆-y₆} ? A. $x_1 x_2 x_3$

Sequence Alignment

Q. CTACCG VS. TACATG. Suppose all a=1 for all mismatches and $\delta=1$, what then is cost of M = {x₂-y₁, x₃-y₂, x₄-y₃, x₅-y₄, x₆-y₆} ? A. 3

7

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$. Q. How to define OPT recursively? What are the cases? (1 min)

x ₁	 	 x _{i-1}	x _i
Y 1	 	 Y _{j-1}	Уj

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

• Case 1: OPT matches x_i with y_i.

Case 2a: OPT leaves x_i unmatched.

• Case 2b: OPT leaves y_i unmatched.

_		· 1		-)	
	x ₁	 		x _{i-1}	x _i
	Y ₁	 		Y _{j-1}	Υj
	X ₁	 		x _{i-1}	x _i
Y 1		 	Y j-1	Уj	-
x ₁		 	× _{i-1}	x _i	-
	Y 1	 		У _{ј-1}	\boldsymbol{y}_{j}

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

- Case 1: OPT matches x_i with y_i.
 - pay mismatch for x_i with y_j + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
- Case 2a: OPT leaves x_i unmatched.

• Case 2b: OPT leaves y_i unmatched.

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

- Case 1: OPT matches x_i with y_i.
 - pay mismatch for x_i with y_j + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{i-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: OPT leaves y_i unmatched.

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

- Case 1: OPT matches x_i with y_i.
 - pay mismatch for x_i with y_j + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{i-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: OPT leaves y_i unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_{j-1}$

Q. What to do if one of the strings (subproblems) is empty?

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_i$.

- Case 1: OPT matches x_i with y_i.
 - pay mismatch for x_i with y_j + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{i-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: OPT leaves y_i unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_{j-1}$

$$OPT (i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT (i-1, j-1) & \text{otherwise} \\ \delta + OPT (i-1, j) & \text{otherwise} \\ \delta + OPT (i, j-1) & \text{if } j = 0 \end{cases}$$

Sequence Alignment: Algorithm

Q. How to prove correctness of such an algorithms?

Proving Correctness of Dynamic Programming Approaches

Thm. **Sequence-Alignment** gives minimal cost of possible alignment. Pf.

Proving Correctness of Dynamic Programming Approaches

Thm. **Sequence-Alignment** gives minimal cost of possible alignment. Pf. (by induction)

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0

- **IH**: Suppose **Sequence-Alignment** gives the minimal cost of any possible alignment up to lengths i and j-1 and up i-1 and j.
- **Step**: Let x and y of length i and j be given.

Proving Correctness of Dynamic Programming Approaches

Thm. **Sequence-Alignment** gives minimal cost of possible alignment. Pf. (by induction)

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0

IH: Suppose **Sequence-Alignment** gives the minimal cost of any possible alignment up to lengths i and j-1 and up i-1 and j.

Step: Let x and y of length i and j be given.

- Then there are three options for the alignment of the last characters:
- Case 1: OPT matches x_i with y_i.
 - pay mismatch for x_i with y_i + min cost of aligning up to i-1 and j-1
- Case 2a: OPT leaves x_i unmatched.

– pay gap for \boldsymbol{x}_i and min cost of aligning up to i-1 and j

• Case 2b: OPT leaves y_i unmatched.

– pay gap for y_i and min cost of aligning up to i and j-1

• The algorithm takes exactly the minimum of these three options.

With induction on both i and j, the theorem now follows.

Sequence Alignment: Algorithm

Q. What is time + space complexity?

Sequence Alignment: Algorithm

Q. What is time + space complexity? A. $\Theta(mn)$ time and space. English words or sentences: m, n \leq 10. Computational biology: m = n = 100 000. 10 billions ops OK, but 10GB array?

Q. How to avoid quadratic space when only interested in the value? (1 min)

$$OPT (i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT (i-1, j-1) & \text{otherwise} \\ \delta + OPT (i-1, j) & \text{otherwise} \\ \delta + OPT (i, j-1) & \text{if } j = 0 \end{cases}$$

- Q. How to avoid quadratic space when only interested in the value?
- A. We can calculate the optimal value in O(m + n) space and O(mn) time.
 - Compute OPT(i, •) from OPT(i-1, •). Re-use space for "row i-1".
 - No longer a simple way to recover alignment itself.

$$OPT (i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT (i-1, j-1) & \text{otherwise} \\ \delta + OPT (i-1, j) & \text{otherwise} \\ \delta + OPT (i, j-1) & \text{if } j = 0 \end{cases}$$

- Q. How to avoid quadratic space when only interested in the value?
- A. We can calculate the optimal value in O(m + n) space and O(mn) time.
 - Compute OPT(i, •) from OPT(i-1, •). Re-use space for "row i-1".
 - No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

- Q. How to avoid quadratic space when only interested in the value?
- A. We can calculate the optimal value in O(m + n) space and O(mn) time.
 - Compute OPT(i, •) from OPT(i-1, •). Re-use space for "row i-1".
 - No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

