6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

| 0 | c | u | r | r | a | n | c | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$--$

6 mismatches, 1 gap
$o c-u r r-a n c e$
occurre-nce
0 mismatches, 3 gaps

TUDelft

String Similarity

How similar are two strings?

- ocurrance
- occurrence
- Penalty for mismatches
(depending on characters)
- Penalty for gaps

Minimize total penalty
First model the problem...
Q. How can we measure the distance?
A. Idea: best of all possibilities

6 mismatches, 1 gap

1 mismatch, 1 gap

TUDelft

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
. Spelling suggestions in document editor.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$ of chars p and q.
- Cost = sum of gap and mismatch penalties.

$$
\begin{array}{lllllllllllll}
C & \mathrm{~T} & G & A & C & C & \mathrm{~T} & A & C & C & \mathrm{~T} \\
C & C & \mathrm{~T} & G & A & C & \mathrm{~T} & A & C & A & \mathrm{~T} \\
& & \alpha_{T C}+\alpha_{G T}+\alpha_{A G}+2 \alpha_{C A}
\end{array}
$$

Sequence Alignment

Goal: Given two strings $\mathrm{X}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}}$ and $\mathrm{Y}=\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}}$ find alignment M of minimum cost.

Def. An alignment M is a set of ordered pairs $\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{i}}-y_{j^{\prime}}$ cross if $i<i '$, but $j>j$ '.

Sequence Alignment

Q. ctaccg vs. tacatg.

Suppose all $a=1$ for all mismatches and $\delta=1$, what then is cost of $M=\left\{x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}\right\}$?
A.

Sequence Alignment

Q. Ctaccg vs. tachtg.

Suppose all $a=1$ for all mismatches and $\delta=1$, what then is cost of $M=\left\{x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}\right\}$?
A. 3

| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | | x_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | T | A | C | C | - | G |
| - | T | A | C | A | T | G |
| | | | | | | |
| | y_{1} | y_{2} | y_{3} | y_{4} | y_{5} | y_{6} |

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\mathrm{min}$ cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$. Q. How to define OPT recursively? What are the cases? (1 min)

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\mathrm{min}$ cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$.

- Case 1: OPT matches x_{i} with y_{j}.

- Case 2a: OPT leaves x_{i} unmatched.

- Case 2b: OPT leaves y_{j} unmatched.

TUDelft

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\mathrm{min}$ cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$.

- Case 1: OPT matches x_{i} with y_{j}.
- pay mismatch for x_{i} with $y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$

- Case 2a: OPT leaves x_{i} unmatched.
- Case 2b: OPT leaves y_{j} unmatched.

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ min cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$.

- Case 1: OPT matches x_{i} with y_{j}.
- pay mismatch for x_{i} with $y_{j}+$ min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$

. Case 2b: OPT leaves y_{j} unmatched.

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ min cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$.

- Case 1: OPT matches x_{i} with y_{j}.
- pay mismatch for x_{i} with $y_{j}+$ min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
. Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

Q. What to do if one of the strings (subproblems) is empty?

Sequence Alignment: Problem Structure

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=$ min cost of aligning strings $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{i}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{j}}$.

- Case 1: OPT matches x_{i} with y_{j}.
- pay mismatch for x_{i} with $y_{j}+$ min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
. Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha) 
    for i = 0 to m
        M[i, 0] = i\delta
    for j = 0 to n
        M[0, j] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[xi, y j] + M[i-1, j-1],
                        \delta + M[i-1, j],
                \delta + M[i, j-1])
    return M[m, n]
}
```

Q. How to prove correctness of such an algorithms?

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment. Pf.

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment.
Pf. (by induction)
Base: by definition of cost: if $m=0$, we have n gap penalties; similar if $n=0$ IH: Suppose Sequence-Alignment gives the minimal cost of any possible alignment up to lengths i and $\mathrm{j}-1$ and up $\mathrm{i}-1$ and j .
Step: Let x and y of length i and j be given.

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment.
Pf. (by induction)
Base: by definition of cost: if $m=0$, we have n gap penalties; similar if $n=0$
IH: Suppose Sequence-Alignment gives the minimal cost of any possible alignment up to lengths i and $\mathrm{j}-1$ and up $\mathrm{i}-1$ and j .
Step: Let x and y of length i and j be given.

- Then there are three options for the alignment of the last characters:
- Case 1: OPT matches x_{i} with y_{j}.
- pay mismatch for x_{i} with $y_{j}+\min$ cost of aligning up to $i-1$ and $j-1$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning up to $\mathrm{i}-1$ and j
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning up to i and $j-1$
. The algorithm takes exactly the minimum of these three options.
With induction on both i and j, the theorem now follows.

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha) 
    for i = 0 to m
        M[i, 0] = i\delta
    for j = 0 to n
        M[0, j] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[xi, y j] + M[i-1, j-1],
                        \delta + M[i-1, j],
                \delta + M[i, j-1])
    return M[m, n]
}
```

Q. What is time + space complexity?

Sequence Alignment: Algorithm


```
    for i = 0 to m
        M[i, 0] = i\delta
    for j = 0 to n
        M[0, j] = j \delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[xi, y j] + M[i-1, j-1],
                        \delta + M[i-1, j],
                        \delta + M[i, j-1])
    return M[m, n]
}
```

Q. What is time + space complexity? A. $\Theta(\mathrm{mn})$ time and space. English words or sentences: m, $\mathrm{n} \leq 10$. Computational biology: $\mathrm{m}=\mathrm{n}=100000.10$ billions ops OK, but 10GB array?

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value? (1 min)

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?
A. We can calculate the optimal value in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space and $\mathrm{O}(\mathrm{mn})$ time.
. Compute OPT(i, \bullet • from OPT($\mathrm{i}-1, \bullet$). Re-use space for "row $\mathrm{i}-1$ ".

- No longer a simple way to recover alignment itself.

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?
A. We can calculate the optimal value in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space and $\mathrm{O}(\mathrm{mn})$ time.
. Compute OPT(i, \bullet) from OPT(i-1, •). Re-use space for "row $\mathrm{i}-1$ ".

- No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?
A. We can calculate the optimal value in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space and $\mathrm{O}(\mathrm{mn})$ time.
. Compute OPT(i, \bullet • from OPT($\mathrm{i}-1, \bullet$). Re-use space for "row $\mathrm{i}-1$ ".
. No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?
Theorem. [Hirschberg 1975] Optimal alignment in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space and $\mathrm{O}(\mathrm{mn})$ time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

