
6.6 Sequence Alignment

2

String Similarity

How similar are two strings?

 ocurrance

 occurrence

First model the problem…

Q. How can we measure the distance?

o c u r r a n c e

c c u r r e n c e o

-

o c u r r n c e

c c u r r n c e o

- - a

e -

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

3

String Similarity

How similar are two strings?

 ocurrance

 occurrence

First model the problem…

Q. How can we measure the distance?

A. Idea: best of all possibilities

 - Penalty for mismatches

 (depending on characters)

 - Penalty for gaps

Minimize total penalty

o c u r r a n c e

c c u r r e n c e o

-

o c u r r n c e

c c u r r n c e o

- - a

e -

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

4

Applications.

 Basis for Unix diff.

 Speech recognition.

 Spelling suggestions in document editor.

 Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

 Gap penalty ; mismatch penalty pq of chars p and q.

 Cost = sum of gap and mismatch penalties.

C G A C C T A C C T

C T G A C T A C A T

T

C

TC + GT + AG+ 2CA 2 + CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -

Edit Distance

5

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment M of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Sequence Alignment

cost (M) x i y j

(x i , y j) M

mismatch

i : x i unmatched

j : y j unmatched

gap

6

Q. CTACCG vs. TACATG.

Suppose all α=1 for all mismatches and δ=1, what then is

cost of M = {x2-y1, x3-y2, x4-y3, x5-y4, x6-y6} ?

A.

Sequence Alignment

cost (M) x i y j

(x i , y j) M

mismatch

i : x i unmatched

j : y j unmatched

gap

C T A C C

T A C A T

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

7

Q. CTACCG vs. TACATG.

Suppose all α=1 for all mismatches and δ=1, what then is

cost of M = {x2-y1, x3-y2, x4-y3, x5-y4, x6-y6} ?

A. 3

Sequence Alignment

C T A C C -

T A C A T -

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

cost (M) x i y j

(x i , y j) M

mismatch

i : x i unmatched

j : y j unmatched

gap

8

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

Q. How to define OPT recursively? What are the cases? (1 min)

xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

9

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi
 with yj.

 Case 2a: OPT leaves xi unmatched.

 Case 2b: OPT leaves yj unmatched.

-

xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

- xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

10

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi
 with yj.

– pay mismatch for xi with yj + min cost of

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.

 Case 2b: OPT leaves yj unmatched.

xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

11

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi
 with yj.

– pay mismatch for xi with yj + min cost of

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of

 aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.

-

xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

12

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi
 with yj.

– pay mismatch for xi with yj + min cost of

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of

 aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of

 aligning x1 x2 . . . xi and y1 y2 . . . yj-1

Q. What to do if one of the strings (subproblems) is empty?

- xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

13

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi
 with yj.

– pay mismatch for xi with yj + min cost of

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of

 aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of

 aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT (i , j)

j if i 0

min

 x i y j
 OPT (i 1, j 1)

 OPT (i 1, j)

 OPT (i , j 1)

otherwise

i if j 0

- xi

yj

xi-1

yj-1

…

…

…

…

…

…

x1

y1

14

Sequence Alignment: Algorithm

Q. How to prove correctness of such an algorithms?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, ,) {

 for i = 0 to m

 M[i, 0] = i

 for j = 0 to n

 M[0, j] = j

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

 return M[m, n]

}

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment.

Pf.

15

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment.

Pf. (by induction)

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0

IH: Suppose Sequence-Alignment gives the minimal cost of any possible

alignment up to lengths i and j-1 and up i-1 and j.

Step: Let x and y of length i and j be given.

16

Proving Correctness of Dynamic Programming Approaches

Thm. Sequence-Alignment gives minimal cost of possible alignment.

Pf. (by induction)

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0

IH: Suppose Sequence-Alignment gives the minimal cost of any possible

alignment up to lengths i and j-1 and up i-1 and j.

Step: Let x and y of length i and j be given.

 Then there are three options for the alignment of the last characters:

 Case 1: OPT matches xi
 with yj.

– pay mismatch for xi with yj + min cost of aligning up to i-1 and j-1

 Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning up to i-1 and j

 Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning up to i and j-1

 The algorithm takes exactly the minimum of these three options.

With induction on both i and j, the theorem now follows.

17

18

Sequence Alignment: Algorithm

Q. What is time + space complexity?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, ,) {

 for i = 0 to m

 M[i, 0] = i

 for j = 0 to n

 M[0, j] = j

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

 return M[m, n]

}

19

Sequence Alignment: Algorithm

Q. What is time + space complexity? A. (mn) time and space.

English words or sentences: m, n 10.

Computational biology: m = n = 100 000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, ,) {

 for i = 0 to m

 M[i, 0] = i

 for j = 0 to n

 M[0, j] = j

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

 return M[m, n]

}

Q. How to avoid quadratic space when only interested in the value? (1 min)

20

Sequence Alignment: Linear Space

OPT (i , j)

j if i 0

min

 x i y j
 OPT (i 1, j 1)

 OPT (i 1, j)

 OPT (i , j 1)

otherwise

i if j 0

21

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.

OPT (i , j)

j if i 0

min

 x i y j
 OPT (i 1, j 1)

 OPT (i 1, j)

 OPT (i , j 1)

otherwise

i if j 0

22

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

23

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

 Clever combination of divide-and-conquer and dynamic programming.

 Inspired by idea of Savitch from complexity theory.

