
6.6  Sequence Alignment 
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String Similarity 

How similar are two strings? 

 ocurrance 

 occurrence 

 

First model the problem… 

Q. How can we measure the distance? 

 
o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

6 mismatches, 1 gap 

1 mismatch, 1 gap 

0 mismatches, 3 gaps 
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String Similarity 

How similar are two strings? 

 ocurrance 

 occurrence 

 

First model the problem… 

Q. How can we measure the distance? 

A. Idea: best of all possibilities 

 - Penalty for mismatches  

        (depending on characters) 

 - Penalty for gaps 

Minimize total penalty 

 

o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

6 mismatches, 1 gap 

1 mismatch, 1 gap 

0 mismatches, 3 gaps 



4 

Applications. 

 Basis for Unix diff. 

 Speech recognition. 

 Spelling suggestions in document editor. 

 Computational biology. 

 

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970] 

 Gap penalty ; mismatch penalty pq of chars p and q. 

 Cost = sum of gap and mismatch penalties. 

C G A C C T A C C T 

C T G A C T A C A T 

T 

C 

TC + GT + AG+ 2CA 2 + CA 

T G A C C T A C C T 

C T G A C T A C A T 

- C 

C - 

Edit Distance 
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 

alignment M of minimum cost. 

 

 

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 

occurs in at most one pair and no crossings. 

 

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'. 

 

Sequence Alignment 

  



cost ( M )   x i y j

( x i , y j )  M



mismatch

 

i : x i unmatched

  

j : y j  unmatched



gap
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Q.  CTACCG vs. TACATG.  

Suppose all α=1 for all mismatches and δ=1, what then is 

cost of M = {x2-y1, x3-y2, x4-y3, x5-y4, x6-y6} ? 

A.  

Sequence Alignment 

  



cost ( M )   x i y j

( x i , y j )  M



mismatch

 

i : x i unmatched

  

j : y j  unmatched



gap

C T A C C 

T A C A T 

G 

G 

y1 y2 y3 y4 y5 y6 

x2 x3 x4 x5 x1 x6 



7 

 

 

 

 

 

 

 

 

Q.  CTACCG vs. TACATG.  

Suppose all α=1 for all mismatches and δ=1, what then is 

cost of M = {x2-y1, x3-y2, x4-y3, x5-y4, x6-y6} ? 

A.  3 

Sequence Alignment 

C T A C C - 

T A C A T - 

G 

G 

y1 y2 y3 y4 y5 y6 

x2 x3 x4 x5 x1 x6 

  



cost ( M )   x i y j

( x i , y j )  M



mismatch

 

i : x i unmatched

  

j : y j  unmatched



gap
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

Q.  How to define OPT recursively? What are the cases? (1 min) 

xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 



9 

Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

 Case 1:  OPT matches xi
 with yj. 

 

 

 Case 2a:  OPT leaves xi unmatched. 

 

 

 Case 2b:  OPT leaves yj unmatched. 

- 

xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 

xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 

- xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

 Case 1:  OPT matches xi
 with yj. 

– pay mismatch for xi with yj  + min cost of 

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

 Case 2a:  OPT leaves xi unmatched. 

 

 

 Case 2b:  OPT leaves yj unmatched. 

xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

 Case 1:  OPT matches xi
 with yj. 

– pay mismatch for xi with yj  + min cost of 

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

 Case 2a:  OPT leaves xi unmatched. 

– pay gap for xi and min cost of  

  aligning x1 x2 . . . xi-1 and y1 y2 . . . yj 

 Case 2b:  OPT leaves yj unmatched. 

- 

xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

 Case 1:  OPT matches xi
 with yj. 

– pay mismatch for xi with yj  + min cost of 

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

 Case 2a:  OPT leaves xi unmatched. 

– pay gap for xi and min cost of  

  aligning x1 x2 . . . xi-1 and y1 y2 . . . yj 

 Case 2b:  OPT leaves yj unmatched. 

– pay gap for yj and min cost of  

  aligning x1 x2 . . . xi and y1 y2 . . . yj-1  

 

Q. What to do if one of the strings (subproblems) is empty? 

- xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 

 Case 1:  OPT matches xi
 with yj. 

– pay mismatch for xi with yj  + min cost of 

aligning x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

 Case 2a:  OPT leaves xi unmatched. 

– pay gap for xi and min cost of  

  aligning x1 x2 . . . xi-1 and y1 y2 . . . yj 

 Case 2b:  OPT leaves yj unmatched. 

– pay gap for yj and min cost of  

  aligning x1 x2 . . . xi and y1 y2 . . . yj-1  

  



OPT ( i , j ) 
















j if  i  0

min  

 x i y j
 OPT ( i  1, j  1)

  OPT ( i  1, j )

  OPT ( i , j  1)









otherwise

i if  j  0

- xi 

yj 

xi-1 

yj-1 

… 

… 

… 

… 

… 

… 

x1 

y1 



14 

Sequence Alignment:  Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Q. How to prove correctness of such an algorithms? 

 
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) { 

   for i = 0 to m 

      M[i, 0] = i 

   for j = 0 to n 

      M[0, j] = j 

 

   for i = 1 to m 

      for j = 1 to n 

         M[i, j] = min([xi, yj] + M[i-1, j-1], 

                        + M[i-1, j], 

                        + M[i, j-1]) 

   return M[m, n] 

} 



Proving Correctness of Dynamic Programming Approaches 

Thm. Sequence-Alignment gives minimal cost of possible alignment.  

Pf.  
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Proving Correctness of Dynamic Programming Approaches 

Thm. Sequence-Alignment gives minimal cost of possible alignment.  

Pf. (by induction) 

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0 

IH: Suppose Sequence-Alignment gives the minimal cost of any possible 

alignment up to lengths i and j-1 and up i-1 and j.  

Step: Let x and y of length i and j be given. 
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Proving Correctness of Dynamic Programming Approaches 

Thm. Sequence-Alignment gives minimal cost of possible alignment.  

Pf. (by induction) 

Base: by definition of cost: if m=0, we have n gap penalties; similar if n=0 

IH: Suppose Sequence-Alignment gives the minimal cost of any possible 

alignment up to lengths i and j-1 and up i-1 and j.  

Step: Let x and y of length i and j be given. 

 Then there are three options for the alignment of the last characters: 

 Case 1:  OPT matches xi
 with yj. 

– pay mismatch for xi with yj  + min cost of aligning up to i-1 and j-1  

 Case 2a:  OPT leaves xi unmatched. 

– pay gap for xi and min cost of aligning up to i-1 and j 

 Case 2b:  OPT leaves yj unmatched. 

– pay gap for yj and min cost of aligning up to i and j-1 

 The algorithm takes exactly the minimum of these three options. 

With induction on both i and j, the theorem now follows. 
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Sequence Alignment:  Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  What is time + space complexity?   

 
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) { 

   for i = 0 to m 

      M[i, 0] = i 

   for j = 0 to n 

      M[0, j] = j 

 

   for i = 1 to m 

      for j = 1 to n 

         M[i, j] = min([xi, yj] + M[i-1, j-1], 

                        + M[i-1, j], 

                        + M[i, j-1]) 

   return M[m, n] 

} 
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Sequence Alignment:  Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.  What is time + space complexity?     A.  (mn) time and space. 

English words or sentences:  m, n   10. 

Computational biology:  m = n = 100 000. 10 billions ops OK, but 10GB array? 

 
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) { 

   for i = 0 to m 

      M[i, 0] = i 

   for j = 0 to n 

      M[0, j] = j 

 

   for i = 1 to m 

      for j = 1 to n 

         M[i, j] = min([xi, yj] + M[i-1, j-1], 

                        + M[i-1, j], 

                        + M[i, j-1]) 

   return M[m, n] 

} 



Q. How to avoid quadratic space when only interested in the value? (1 min) 
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Sequence Alignment:  Linear Space 

  



OPT ( i , j ) 
















j if  i  0

min  

 x i y j
 OPT ( i  1, j  1)

  OPT ( i  1, j )

  OPT ( i , j  1)









otherwise

i if  j  0
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

  



OPT ( i , j ) 
















j if  i  0

min  

 x i y j
 OPT ( i  1, j  1)

  OPT ( i  1, j )

  OPT ( i , j  1)









otherwise

i if  j  0
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

Q*. How can we still get the solution as well? 
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

Q*. How can we still get the solution as well? 

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time. 

 Clever combination of divide-and-conquer and dynamic programming. 

 Inspired by idea of Savitch from complexity theory. 

 


