
6.7 Sequence Alignment in Linear Space

2

Goal: Given two strings X = x1 x2 . . . xm

and Y = y1 y2 . . . yn find alignment M of

minimum cost.

Def. An alignment M is a set of ordered

pairs xi-yj such that each item occurs in at

most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i',

but j > j'.

Sequence Alignment



cost (M)   x i y j

(x i , y j)  M



mismatch

 

i : x i unmatched

  

j : y j unmatched



gap

o c u r r a n c e

c c u r r e n c e o

-

o c u r r n c e

c c u r r n c e o

- - a

e -

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Q. How to avoid quadratic space when only interested in the value? (1 min)

3

Sequence Alignment: Linear Space



OPT (i , j) 
















j if i  0

min

 x i y j
 OPT (i  1, j  1)

  OPT (i  1, j)

  OPT (i , j  1)









otherwise

i if j  0

4

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.



OPT (i , j) 
















j if i  0

min

 x i y j
 OPT (i  1, j  1)

  OPT (i  1, j)

  OPT (i , j  1)









otherwise

i if j  0

5

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

6

Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”.

 No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

 Clever combination of divide-and-conquer and dynamic programming.

 Inspired by idea of Savitch from complexity theory.

Q. How to apply divide and conquer? How to divide the problem? (1 min)

Sequence Alignment: Divide and conquer

7

…

…

…

… …

x1

y1

xm

y

n

…

…

…

…

… …

…

A. Cut string y into two halves.

Decide for every index q of x:

the optimal alignment up to (q,n/2) and

the optimal alignment from (q,n/2) to (m,n).

Then, the shortest path from (0, 0) to (m, n) uses the minimum of these.

Sequence Alignment: Divide and conquer

8

yn/2

…

…

…

… …

x1

y1

xm

y

n

…

…

…

…

xq …

potentially requires us to solve m times
a sequence alignment problem…

9

Edit distance graph.

 Gap penalty ; mismatch penalty ij; empty string 

Sequence Alignment: Visualization of the matrix

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0







 x i y j

10

Edit distance graph.

 Gap penalty ; mismatch penalty ij; empty string 

 Let f(i, j) be shortest path from (0,0) to (i, j).

f(i,j) represents the best way to align x1..xi and y1..yj

Sequence Alignment: Visualization of the matrix

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0







 x i y j

11

Edit distance graph.

 Let f(i, j) be shortest path from (0,0) to (i, j).

 Can compute length of f (•, j) for any j in O(mn) time and O(m + n)

space, because same subproblems are used.

 (NB: • means: for all 1≤q≤m)

Sequence Alignment: Linear Space

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0

j

12

Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute g by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0







 x i y j

13

Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute length of g(•, j) for any j in O(mn) time and O(m + n)

space

Sequence Alignment: Linear Space

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0

j

14

Observation 1. The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0

15

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0

n / 2

q

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

 Output: Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Q. What is the running time of this algorithm?

16

Sequence Alignment: Linear Space

i,j x1

x2

y1

x3

y2 y3 y4 y5 y6





0,0

q

n / 2

m,n

17

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf.

Sequence Alignment: Running Time Analysis Warmup

18

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f(•, n/2) and g(•, n/2) and find index q.

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.

Sequence Alignment: Running Time Analysis Warmup

19

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f(•, n/2) and g(•, n/2) and find index q.

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.

 does not fit Master theorem

Sequence Alignment: Running Time Analysis Warmup

)()2/,(2),(mnOnmTnmT 

20

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f(•, n/2) and g(•, n/2) and find index q.

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.

 does not fit Master theorem,

 first try for m=n:

Q. Use the master method to solve this recurrence relation.

Sequence Alignment: Running Time Analysis Warmup

)()2/,(2),(mnOnmTnmT 

)()2/(2)(
2

nOnTnT 

21

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f(•, n/2) and g(•, n/2) and find index q.

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.

 does not fit Master theorem,

 first try for m=n:

Q. Use the master method to solve this recurrence relation.

 So this is case?

Sequence Alignment: Running Time Analysis Warmup

)()2/,(2),(mnOnmTnmT 

)()2/(2)(
2

nOnTnT 

)()(

;2,2

1

2loglog 2






nnf

nnnba
ab

22

Q. Let T(m, n) = max running time of algorithm on strings of length at

most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f(•, n/2) and g(•, n/2) and find index q.

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.

 does not fit Master theorem,

 first try for m=n:

Q. Use the master method to solve this recurrence relation.

 So this is case 3. Check regularity condition: 2f(n/2) =2(n/2)2  cn2 ;

e.g. for c=1/2, and thus:

Q. How to solve this for any m?

Sequence Alignment: Running Time Analysis Warmup

)()2/,(2),(mnOnmTnmT 

)()2/(2)(
2

nOnTnT 

)()(
2

nnT 

)()(

;2,2

1

2loglog 2






nnf

nnnba
ab

)()2/,()2/,(),(mnOnqmTnqTnmT 

23

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. By induction on n we show that T(m, n)  2cmn

Sequence Alignment: Running Time Analysis

)()2/,()2/,(),(mnOnqmTnqTnmT 

24

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. By induction on n we show that T(m, n)  2cmn

 Choose constant c so that:

 Base cases: m = 2 or n = 2: immediate from def. of c.

 Inductive hypothesis: T(m’, n’)  2cm’n’ for m’<m and n’<n.

 Step:

Sequence Alignment: Running Time Analysis

)()2/,()2/,(),(mnOnqmTnqTnmT 



T (m , 2)  cm

T (2, n)  cn

T (m , n)  cmn  T (q , n / 2)  T (m  q , n / 2)

25

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. By induction on n we show that T(m, n)  2cmn

 Choose constant c so that:

 Base cases: m = 2 or n = 2.

 Inductive hypothesis: T(m’, n’)  2cm’n’ for m’<m and n’<n.

 Step:

Sequence Alignment: Running Time Analysis



T (m ,n)  T (q,n / 2)  T (m  q,n / 2)  cmn





 2cmn

)()2/,()2/,(),(mnOnqmTnqTnmT 



T (m , 2)  cm

T (2, n)  cn

T (m , n)  cmn  T (q , n / 2)  T (m  q , n / 2)

Q. What can we use here?

26

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. By induction on n we show that T(m, n)  2cmn

 Choose constant c so that:

 Base cases: m = 2 or n = 2.

 Inductive hypothesis: T(m’, n’)  2cm’n’ for m’<m and n’<n.

 Step:

Sequence Alignment: Running Time Analysis



T (m ,n)  T (q,n / 2)  T (m  q,n / 2)  cmn

 2cqn / 2  2c (m  q)n / 2  cmn

 cqn  cmn  cqn  cmn

 2cmn

use inductive hypothesis

)()2/,()2/,(),(mnOnqmTnqTnmT 



T (m , 2)  cm

T (2, n)  cn

T (m , n)  cmn  T (q , n / 2)  T (m  q , n / 2)

This proof can be found on page 289-290

