6.7 Sequence Alignment in Linear Space




Sequence Alignment

Goal: Given two strings X = X; X5 . . . X,
andY =v,Y,...Y, find alignment M of o
minimum cost.

Def. An alignment M is a set of ordered 0

pairs x;-y; such that each item occurs in at

most one pair and no crossings. ©

Def. The pair xi-y; and x;-y; cross if i <1,

butj > j. o
0

cost (M) = 2, + > 0+ > 0
i
(X, y;) e M i : X; unmatched j:yjunmatched
;_\/__J R S — —_—
mismatch gap

Jurflalniclel-

Jdclullirleln c

6 mismatches, 1 gap

O mismatches, 3 gaps

]
TUDelft

C

C

2



Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value? (1 min)

]
TUDelft



Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, ) from OPT(i-1, ). Re-use space for “row i-1".
. No longer a simple way to recover alignment itself.

[ s ifi=0
| faxiyj+OPT (i—-1, j—1)
OPT (i, j)=19 min J o+ OPT (i—1, j) otherwise
| [5+OPT (i, j—1)
i5 ifj=0

]
TUDelft



Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, ) from OPT(i-1, ). Re-use space for “row i-1".
. No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?

]
TUDelft



Sequence Alignment: Linear Space

Q. How to avoid quadratic space when only interested in the value?

A. We can calculate the optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, ) from OPT(i-1, ). Re-use space for “row i-1".
. No longer a simple way to recover alignment itself.

Q*. How can we still get the solution as well?
Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.
. Clever combination of divide-and-conquer and dynamic programming.
. Inspired by idea of Savitch from complexity theory.

]
TUDelft



Sequence Alignment: Divide and conquer

Q. How to apply divide and conquer? How to divide the problem? (1 min)

]
TUDelft



Sequence Alignment: Divide and conquer

A. Cut string y into two halves potentially requires us to solve m times

'/ a sequence alignhment problem..
Decide for every index q of x:

=the optimal alignment up to (q,n/2) and
»the optimal alignment from (q,n/2) to (m,n).
Then, the shortest path from (0, 0) to (m, n) uses the minimum of these.

Y1 Yn/2 y

]
TUDelft

8



Sequence Alignment: Visualization of the matrix

Edit distance graph.
- Gap penalty §; mismatch penalty oy; empty string ¢

X3 4 @
TUDelft



Sequence Alignment: Visualization of the matrix

Edit distance graph.
- Gap penalty §; mismatch penalty oy; empty string ¢
. Let f(i, j) be shortest path from (0,0) to (i, j).

f(i,j) represents the best way to align x;..x; and y;..y,

€ Y1 Y2 Y3 Ya Y5

o]
TU

Yo

@
Delft

10



Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Can compute length of f (e, j) for any j in O(mn) time and O(m + n)
space, because same subproblems are used.
(NB: » means: for all 1<q<m) J

€ Y1 Y2 Y3 Y4 Y5 Yo

LN

* @

]
TUDelft

1



Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

€ Y1 Y2 Y3 Y4 Y5 Yo

X; - Q@
TUDelft



Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).

. Can compute length of g(e, j) for any j in O(mn) time and O(m + n)
space

AN

X3 ;‘_@
TUDelft



Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, 3) + a(i, j).

2 Y1 Y2 Y3 Ya Y5 Ye

N\

X3 T@
TUDelft

14



Sequence Alignment: Linear Space

Observation 2. let g be an index that minimizes f(qg, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (g, n/2).

n/2

€ Y1 Y2 Y3 Y4 Y5 Yo

X3 T@
TUDelft

15



Sequence Alignment: Linear Space

Divide: find index g that minimizes f(g, n/2) + g(q, n/2) using DP.

- Output: Align x, and y, 5.
Conquer: recursively compute optimal alignment in each piece.

Q. What is the running time of this algorithm?
n/?2

€ Y1 Y Y3 Ya Y5

x i

TUDelft

Yo

16



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.
Pf.

]
TUDelft

17



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.
Pf. O(mn) time to compute f( ¢, n/2) and g( ¢, n/2) and find index q.

. then T(qg, n/2) + T(m - g, n/2) time for two recursive calls.

]
TUDelft

18



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.
Pf. O(mn) time to compute f( ¢, n/2) and g( ¢, n/2) and find index q.
. then T(qg, n/2) + T(m - g, n/2) time for two recursive calls.
T(m,n)<2T(m,n/2)+O(mn) does not fit Master theorem

]
TUDelft

19



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f( ¢, n/2) and g( ¢, n/2) and find index q.
. then T(qg, n/2) + T(m - g, n/2) time for two recursive calls.
T(m,n)<2T(m,n/2)+O(mn) does not fit Master theorem,

. first try for m=n: 7 (N)< 2T (n/2) + O (n?)

Q. Use the master method to solve this recurrence relation.

]
TUDelft

20



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.

Pf. O(mn) time to compute f( ¢, n/2) and g( ¢, n/2) and find index q.
. then T(qg, n/2) + T(m - g, n/2) time for two recursive calls.
T(m,n)<2T(m,n/2)+O(mn) does not fit Master theorem,

. first try for m=n: T(n)<2T(n/2)+ O(nz)
Q. Use the master method to solve this recurrence relation.
a=2 b=2: n%*=np"%*_ny
f(n)=Q(n")

. So this is case?

]
TUDelft

21



Sequence Alignment: Running Time Analysis Warmup

Q. Let T(m, n) = max running time of algorithm on strings of length at
most m and n. Give a tight bound for T.
Pf. O(mn) time to compute f( ¢, n/2) and g( ¢, n/2) and find index q.
. then T(qg, n/2) + T(m - g, n/2) time for two recursive calls.
T(m,n)<2T(m,n/2)+O(mn) does not fit Master theorem,

. first try for m=n: 7 (N)< 2T (n/2) + O (n?)

Q. Use the master method to solve this recurrence relation.
a=2,b=2; n®*=n"%%_p
f(n)=Q(n"")

. So this is case 3. Check regularity condition: 2f(n/2) =2(n/2)2<cn? ;
e.g. for c=1/2, and thus: 1 () = @(n?)

Q. How to solve this for any m?
T(mn)<T(q,n/2)+T(m-qg,n/2)+O(mn)

]
TUDelft

22



Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).
T(mnN)<T(gq,n/2)+T(m-q,n/2)+0O(mn)

Pf. By induction on n we show that T(m, n) < 2cmn

]
TUDelft

23



Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).
T(mn)<T(gq,n/2)+T(m-q,n/2)+O(mn)

Pf. By induction on n we show that T(m, n) < 2cmn

. Choose constant c so that:
T(m, 2)

T(2, n)
T(m,n) < cmn +T(q, n/2)+T(m—-q, n/2)

IA

cm

IN

cn

. Base cases: m = 2 or n = 2: immediate from def. of c.
. Inductive hypothesis: T(m’, n") < 2cm’n’ for m’<m and n'<n.
. Step:

]
TUDelft



Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).
T(mn)<T(gq,n/2)+T(m-q,n/2)+O(mn)

Pf. By induction on n we show that T(m, n) < 2cmn

. Choose constant c so that:
T(m, 2)

T(2, n)
T(m,n) < cmn +T(q, n/2)+T(m—-q, n/2)

IA

cm

IN

cn

. Basecases: m=2orn =2,
. Inductive hypothesis: T(m’, n") < 2cm’n’ for m’<m and n'<n.

. Step:
T(m,n)

IA

T(q,n/2)+T(m —q,n/2)+ cmn

IA

< Q. What can we use here?

2cmn

]
TUDelft

25



Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).
T(mn)<T(gq,n/2)+T(m-q,n/2)+O(mn)

Pf. By induction on n we show that T(m, n) < 2cmn
. Choose constant c so that:

T(m, 2) < cm
T(2, n) < «¢n
T(m,n) < cmn +T(q, n/2)+T(m—-q, n/2)

. Basecases: m=2orn =2,
. Inductive hypothesis: T(m’, n") < 2cm’n’ for m’<m and n'<n.

. Step:
T(m,n)

IA

T'(qg,n/2)+ T(m —q,n/2)+ cmn
«—— Uuse inductive hypothesis

IA

2cqgn 12+ 2c(m —q)n /2 + cmn

cqn + cmn —cqn + cmn

2cmn

]
This proof can be found on page 289-290 TU Delft 26



