
6.7  Sequence Alignment in Linear Space 
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Goal:  Given two strings X = x1 x2 . . . xm 

and Y = y1 y2 . . . yn find alignment M of 

minimum cost. 

 

 

Def.  An alignment M is a set of ordered 

pairs xi-yj such that each item occurs in at 

most one pair and no crossings. 

 

Def.  The pair xi-yj and xi'-yj' cross if i < i', 

but j > j'. 

 

Sequence Alignment 

  



cost ( M )   x i y j

( x i , y j )  M



mismatch

 

i : x i unmatched

  

j : y j  unmatched



gap

o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

6 mismatches, 1 gap 

1 mismatch, 1 gap 

0 mismatches, 3 gaps 



Q. How to avoid quadratic space when only interested in the value? (1 min) 
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Sequence Alignment:  Linear Space 

  



OPT ( i , j ) 
















j if  i  0

min  

 x i y j
 OPT ( i  1, j  1)

  OPT ( i  1, j )

  OPT ( i , j  1)









otherwise

i if  j  0
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

  



OPT ( i , j ) 
















j if  i  0

min  

 x i y j
 OPT ( i  1, j  1)

  OPT ( i  1, j )

  OPT ( i , j  1)









otherwise

i if  j  0
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

Q*. How can we still get the solution as well? 
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Sequence Alignment:  Linear Space 

Q. How to avoid quadratic space when only interested in the value? 

A.  We can calculate the optimal value in O(m + n) space and O(mn) time. 

 Compute OPT(i, •) from OPT(i-1, •). Re-use space for “row i-1”. 

 No longer a simple way to recover alignment itself. 

 

Q*. How can we still get the solution as well? 

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time. 

 Clever combination of divide-and-conquer and dynamic programming. 

 Inspired by idea of Savitch from complexity theory. 

 



Q.  How to apply divide and conquer? How to divide the problem? (1 min) 

Sequence Alignment:  Divide and conquer 

7 

… 

… 

… 

… … 

x1 

y1 

xm 

y

n 

… 

… 

… 

… 

… … 

… 



A.  Cut string y into two halves. 

Decide for every index q of x: 

the optimal alignment up to (q,n/2) and  

the optimal alignment from (q,n/2) to (m,n). 

Then, the shortest path from (0, 0) to (m, n) uses the minimum of these. 

Sequence Alignment:  Divide and conquer 
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yn/2 

… 

… 

… 

… … 

x1 

y1 

xm 

y

n 

… 

… 

… 

… 

xq … 

potentially requires us to solve m times 
a sequence alignment problem… 
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Edit distance graph. 

 Gap penalty ; mismatch penalty ij; empty string  

Sequence Alignment:  Visualization of the matrix 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

 

 

  



 x i y j
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Edit distance graph. 

 Gap penalty ; mismatch penalty ij; empty string  

 Let f(i, j) be shortest path from (0,0) to (i, j). 

f(i,j) represents the best way to align x1..xi and y1..yj 

Sequence Alignment:  Visualization of the matrix 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

 

 

  



 x i y j
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Edit distance graph. 

 Let f(i, j) be shortest path from (0,0) to (i, j). 

 Can compute length of f (•, j) for any j in O(mn) time and O(m + n) 

space, because same subproblems are used.  

 (NB: • means: for all 1≤q≤m) 

Sequence Alignment:  Linear Space 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

j 
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Edit distance graph. 

 Let g(i, j) be shortest path from (i, j) to (m, n). 

 Can compute g by reversing the edge orientations and inverting the 

roles of (0, 0) and (m, n) 

 

Sequence Alignment:  Linear Space 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

 

 

  



 x i y j
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Edit distance graph. 

 Let g(i, j) be shortest path from (i, j) to (m, n). 

 Can compute length of g(•, j) for any j in O(mn) time and O(m + n) 

space 

 

Sequence Alignment:  Linear Space 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

j 



14 

Observation 1.  The cost of the shortest path that uses (i, j) is 

f(i, j) + g(i, j).  

Sequence Alignment:  Linear Space 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2). 

Sequence Alignment:  Linear Space 

i,j 

m,n 

x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

n / 2 

q 



Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP. 

 Output: Align xq and yn/2. 

Conquer:  recursively compute optimal alignment in each piece. 

Q.  What is the running time of this algorithm? 
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Sequence Alignment:  Linear Space 

i,j x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

 

 

0,0 

q 

n / 2 

m,n 
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf.  

Sequence Alignment:  Running Time Analysis Warmup 
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf. O(mn) time to compute f( •, n/2) and g( •, n/2) and find index q. 

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

Sequence Alignment:  Running Time Analysis Warmup 
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf. O(mn) time to compute f( •, n/2) and g( •, n/2) and find index q. 

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.  

                                                    does not fit Master theorem 

Sequence Alignment:  Running Time Analysis Warmup 

)(  )2/,(2  ),( mnOnmTnmT 
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf. O(mn) time to compute f( •, n/2) and g( •, n/2) and find index q. 

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.  

                                                    does not fit Master theorem, 

 first try for m=n: 

 

Q. Use the master method to solve this recurrence relation. 

 

Sequence Alignment:  Running Time Analysis Warmup 

)(  )2/,(2  ),( mnOnmTnmT 

)(  )2/(2  )(
2

nOnTnT 
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf. O(mn) time to compute f( •, n/2) and g( •, n/2) and find index q. 

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.  

                                                    does not fit Master theorem, 

 first try for m=n: 

 

Q. Use the master method to solve this recurrence relation. 

 

 

 

 So this is case? 

Sequence Alignment:  Running Time Analysis Warmup 

)(  )2/,(2  ),( mnOnmTnmT 

)(  )2/(2  )(
2

nOnTnT 

)()(

;2,2

1

2loglog 2






nnf

nnnba
ab
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Q.  Let T(m, n) = max running time of algorithm on strings of length at 

most m and n. Give a tight bound for T. 

Pf. O(mn) time to compute f( •, n/2) and g( •, n/2) and find index q. 

 then T(q, n/2) + T(m - q, n/2) time for two recursive calls.  

                                                    does not fit Master theorem, 

 first try for m=n: 

 

Q. Use the master method to solve this recurrence relation. 

 

 

 

 So this is case 3. Check regularity condition: 2f(n/2) =2(n/2)2  cn2  ; 

e.g. for c=1/2, and thus: 

 

Q.  How to solve this for any m? 

Sequence Alignment:  Running Time Analysis Warmup 

)(  )2/,(2  ),( mnOnmTnmT 

)(  )2/(2  )(
2

nOnTnT 

)()(
2

nnT 

)()(

;2,2

1

2loglog 2






nnf

nnnba
ab

)( )2/,( )2/,(  ),( mnOnqmTnqTnmT 
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn). 

 

 

Pf.  By induction on n we show that T(m, n)   2cmn 

Sequence Alignment:  Running Time Analysis 

)( )2/,( )2/,(  ),( mnOnqmTnqTnmT 
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn). 

 

 

Pf.  By induction on n we show that T(m, n)   2cmn 

 Choose constant c so that: 

 

 

 

 Base cases: m = 2 or n = 2: immediate from def. of c. 

 Inductive hypothesis:  T(m’, n’)   2cm’n’ for m’<m and n’<n. 

 Step: 

Sequence Alignment:  Running Time Analysis 

)( )2/,( )2/,(  ),( mnOnqmTnqTnmT 

  



T (m ,  2 )  cm

T (2,  n )  cn

T (m , n )  cmn  T (q ,  n / 2 )  T (m  q ,  n / 2 )
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn). 

 

 

Pf.  By induction on n we show that T(m, n)   2cmn 

 Choose constant c so that: 

 

 

 

 Base cases: m = 2 or n = 2.  

 Inductive hypothesis:  T(m’, n’)   2cm’n’ for m’<m and n’<n. 

 Step: 

Sequence Alignment:  Running Time Analysis 



T (m ,n )  T (q,n / 2)  T (m  q,n / 2)  cmn





 2cmn

)( )2/,( )2/,(  ),( mnOnqmTnqTnmT 

  



T (m ,  2 )  cm

T (2,  n )  cn

T (m , n )  cmn  T (q ,  n / 2 )  T (m  q ,  n / 2 )

Q. What can we use here? 
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn). 

 

 

Pf.  By induction on n we show that T(m, n)   2cmn 

 Choose constant c so that: 

 

 

 

 Base cases: m = 2 or n = 2.  

 Inductive hypothesis:  T(m’, n’)   2cm’n’ for m’<m and n’<n. 

 Step: 

Sequence Alignment:  Running Time Analysis 



T (m ,n )  T (q,n / 2)  T (m  q,n / 2)  cmn

 2cqn / 2  2c (m  q)n / 2  cmn

 cqn  cmn  cqn  cmn

 2cmn

use inductive hypothesis 

)( )2/,( )2/,(  ),( mnOnqmTnqTnmT 

  



T (m ,  2 )  cm

T (2,  n )  cn

T (m , n )  cmn  T (q ,  n / 2 )  T (m  q ,  n / 2 )

This proof can be found on page 289-290  


