6.8 Shortest Paths

= Shortest path problem
= DP approach
= analysis
= recursive function
= jterative algorithm
= improved algorithm (Bellman-Ford)

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights c,,,, find shortest path from node s to node t.

allow negative weights

Ex. Nodes represent agents in a financial setting and c,,, is cost of
transaction in which we buy from agent v and sell immediately to w.
Find negative cycles!

10
9/@

We have already seen an algorithm for shortest paths...

]
TUDelft

Dijkstra's Algorithm

For each unexplored node, explicitly maintain z(v)= min OPT (u) + ¢,

(u,v):ues

. Next node to explore = node with minimum =(v).
. AddvtoS, OPT(v) = n(v).

. For each incident edge e = (v, w), update z(w)=min {z(w), 7(v)+c_ }.

explored

]
TUDelft

3

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to
Dijkstra when run on this graph?

Dijkstra:
Next node to explore
= node with minimum w(v).

u,v):ue

]
TUDelft

4

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to Dijkstra:
. _ Next node to explore
Dijkstra when run on this graph? = node with minimum ni(v).
A. +1 instead of -1 2 A ; e(v)= min OPT(u)+ec.
(u,v):ues

@« ., ®

ol

Q. What can we do to fix Dijkstra’s shortest path algorithm?
Re-weighting. What happens if we add a constant to every edge weight?
A. Dijkstra returns 4 (10) instead of 3 (12).

]
TUDelft

Shortest Paths: Negative Cost Cycles

7
o d

Q. What is the desired solution if some path from s to t contains a
negative cost cycle?
A. No shortest s-t path exists. (Path needs to have finite steps.)

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle, there
does not exist a shortest s-t path; otherwise, there exists one that is
simple.

c(W)<0

]
TUDelft

Dynamic Programming Recipe

Recipe.
. Characterize structure of problem.
— make one decision (eg for one object)
— determine how it depends on subproblem(s)
. Recursively define value of optimal solution
. Compute value of optimal solution.

. Construct optimal solution from computed information.

]
TUDelft

Dynamic Programming Summary

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.
. Multi-way choice: segmented least squares.
. More subproblems per choice (intervals): RNA secondary structure.

. Two inputs: sequence alignment
. Adding a new variable: knapsack, shortest-path (Bellman-Ford).

Top-down vs. bottom-up (or from left to right): different people have
different intuitions.

]
TUDelft

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step? 3 /v@ 1

Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

]
TUDelft

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step? 3 /v@ 1

A. “Via which edge (w,v) is the shortest path from s?” (G5 ,) 2)@

Q. How does it depend on subproblems?
A. If we use (w,v): “what is (length of) shortest path to w?”

Q. What is the recursive definition of the optimal solution?

ifv=s

0
OPT (v) = J min { OPT (w)+c, } otherwise
[(w,v) e E

However, OPT(w) is not really a (smaller) sub-problem... / :2{ j:
How can we make sure that this is really smaller? i 3

10

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step? 3 /v@ 1

Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

]
TUDelft |

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step?
A. “Via which edge (w,V) is the shortest path with at most i edges?”

Q. How does it depend on subproblems?

A. If we use (w,v): what is shortest path to w using at most i-1 edges?

Q. What is the recursive definition of the optimal solution?

]
TUDelft

12

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest s-v path P using at most i edges.

. OPT(i,v) uses an edge (w,v) and
— then selects best s-w path using at most i-1 edges (recursively)

0 ifv=s
OPT(i,v) =4 o0 ifi =0
min (., ,\eg {OPT (i — 1, w) + ¢y} otherwise

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest s-v path.

Remark. The approach in this slide differs from Kleinberg (p293-294):
. we reason backwards from t and have s as the base case
. we define OPT(i,s)=0 for all and don’t need OPT(i-1,v)

]
TUDelft

13

Shortest Paths: Implementation

Q. What is the time complexity?

Q. What is the space complexity?

]
TUDelft

14

Shortest Paths:

Implementation

Q. What is the time complexity?
A. ©(mn) time

Q. What is the space complexity?
A. ©(n?) space.

]
TUDelft

15

Shortest Paths: Practical Improvements

Q. How to reduce use of memory?

]
TUDelft

16

Shortest Paths: Practical Improvements

Shortest-Path (G, s) {
foreach node v € V
M[O, V] « o©
for 1 = 0 to n-1
M[i, s] « O

for i =1 to n-1
foreach node v € V
M[i, v] « min, g {M[i-1, w] + c, }

Q. How to reduce use of memory?

A. Maintain only one array M[v] = length of shortest s-v path that we have
found so far (using i or i-1 edges).

Q. But how then to recover found solution (path)?

A. Maintain predecessor array predecessor[v] = best step found so far

Observation. No need to check edges of the form (w, v) unless M[w]
changed in previous iteration. (“push-based”)

17

Bellman-Ford: Efficient Implementation

Q. When can we stop?

]
TUDelft

Bellman-Ford: Efficient Implementation

Shortest Paths: Practical Improvements

Theorem. Throughout the algorithm,
. M[v] is length of some s-v path, and
. after i rounds of updates, the value M[v] is no larger than the length of
shortest s-v path using < i edges.
. Almost the same algorithm for calculating shortest v-t path (see book).
Q. Spot the differences! (at home)

Overall impact. [Bellman-Ford algorithm, 1958]

. Memory: O(m + n).
- Running time: O(mn) worst case, but substantially faster in practice.

]
TUDelft

