
6.8 Shortest Paths

 Shortest path problem

 DP approach

 analysis

 recursive function

 iterative algorithm

 improved algorithm (Bellman-Ford)

2

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge

weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of

transaction in which we buy from agent v and sell immediately to w.

Find negative cycles!

We have already seen an algorithm for shortest paths…

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

3

Dijkstra's Algorithm

For each unexplored node, explicitly maintain

 Next node to explore = node with minimum (v).

 Add v to S, OPT(v) = (v).

 For each incident edge e = (v, w), update

s

v

u

OPT(u)

S

cuv

explored

 (w) min (w), (v) c
cw .

 (v) min
(u, v) : u S

OPT (u) c
uv

4

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to

 Dijkstra when run on this graph?

Q. What can we do to fix Dijkstra’s shortest path algorithm?

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

Dijkstra:
Next node to explore
= node with minimum (v).

 (v) min
(u, v) : u S

OPT (u) c
uv

5

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to

 Dijkstra when run on this graph?

A. +1 instead of -1

Q. What can we do to fix Dijkstra’s shortest path algorithm?

Re-weighting. What happens if we add a constant to every edge weight?

A. Dijkstra returns 4 (10) instead of 3 (12).

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

6 6

0

Dijkstra:
Next node to explore
= node with minimum (v).

 (v) min
(u, v) : u S

OPT (u) c
uv

6

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Q. What is the desired solution if some path from s to t contains a

negative cost cycle?

A. No shortest s-t path exists. (Path needs to have finite steps.)

Observation. If some path from s to t contains a negative cost cycle, there

does not exist a shortest s-t path; otherwise, there exists one that is

simple.

s t
W

c(W) < 0

 -6

 7

 -4

7

Dynamic Programming Recipe

Recipe.

 Characterize structure of problem.

– make one decision (eg for one object)

– determine how it depends on subproblem(s)

 Recursively define value of optimal solution

 Compute value of optimal solution.

 Construct optimal solution from computed information.

8

Dynamic Programming Summary

Dynamic programming techniques.

 Binary choice: weighted interval scheduling.

 Multi-way choice: segmented least squares.

 More subproblems per choice (intervals): RNA secondary structure.

 Two inputs: sequence alignment

 Adding a new variable: knapsack, shortest-path (Bellman-Ford).

Top-down vs. bottom-up (or from left to right): different people have

different intuitions.

9

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step?

Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

w1

s

w2

2

v

2

1

1

3

10

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step?

A. “Via which edge (w,v) is the shortest path from s?”

Q. How does it depend on subproblems?

A. If we use (w,v): “what is (length of) shortest path to w?”

Q. What is the recursive definition of the optimal solution?

However, OPT(w) is not really a (smaller) sub-problem…

How can we make sure that this is really smaller?

OPT (v)

0 if v s

(w ,v) E
min OPT (w) c

wv otherwise

u

s v

2

3

w

2

1

1

w1

s

w2

2

v

2

1

1

3

11

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step?

Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

w1

s

w2

2

v

2

1

1

3

12

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v:

Q. Which decision to make in one step?

A. “Via which edge (w,v) is the shortest path with at most i edges?”

Q. How does it depend on subproblems?

A. If we use (w,v): what is shortest path to w using at most i-1 edges?

Q. What is the recursive definition of the optimal solution?

13

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest s-v path P using at most i edges.

 OPT(i,v) uses an edge (w,v) and

– then selects best s-w path using at most i-1 edges (recursively)

Remark. By previous observation, if no negative cycles, then

OPT(n-1, v) = length of shortest s-v path.

Remark. The approach in this slide differs from Kleinberg (p293-294):

 we reason backwards from t and have s as the base case

 we define OPT(i,s)=0 for all and don’t need OPT(i-1,v)

14

Shortest Paths: Implementation

Q. What is the time complexity?

Q. What is the space complexity?

Shortest-Path(G, s) {

 foreach node v V

 M[0, v]

 for i = 0 to n-1

 M[i, s] 0

 for i = 1 to n-1

 foreach node v V

 M[i, v] min(w,v)E {M[i-1, w] + cwv }

}

15

Shortest Paths: Implementation

Q. What is the time complexity?

A. (mn) time

Q. What is the space complexity?

A. (n2) space.

Shortest-Path(G, s) {

 foreach node v V

 M[0, v]

 for i = 0 to n-1

 M[i, s] 0

 for i = 1 to n-1

 foreach node v V

 M[i, v] min(w,v)E {M[i-1, w] + cwv }

}

16

Shortest Paths: Practical Improvements

Q. How to reduce use of memory?

Shortest-Path(G, s) {

 foreach node v V

 M[0, v]

 for i = 0 to n-1

 M[i, s] 0

 for i = 1 to n-1

 foreach node v V

 M[i, v] min(w,v)E {M[i-1, w] + cwv }

}

17

Shortest Paths: Practical Improvements

Q. How to reduce use of memory?

A. Maintain only one array M[v] = length of shortest s-v path that we have

found so far (using i or i-1 edges).

Q. But how then to recover found solution (path)?

A. Maintain predecessor array predecessor[v] = best step found so far

Observation. No need to check edges of the form (w, v) unless M[w]

changed in previous iteration. (“push-based”)

Shortest-Path(G, s) {

 foreach node v V

 M[0, v]

 for i = 0 to n-1

 M[i, s] 0

 for i = 1 to n-1

 foreach node v V

 M[i, v] min(w,v)E {M[i-1, w] + cwv }

}

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {

 foreach node v V {

 M[v]

 predecessor[v]

 }

 M[s] = 0

 for i = 1 to n-1 {

 foreach node w V {

 if (M[w] has been updated in previous iteration) {

 foreach node v such that (w, v) E {

 if (M[v] > M[w] + cwv) {

 M[v] M[w] + cwv

 predecessor[v] w

 }

 }

 }

 }

 }

}

Q. When can we stop?

19

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {

 foreach node v V {

 M[v]

 predecessor[v]

 }

 M[s] = 0

 for i = 1 to n-1 {

 foreach node w V {

 if (M[w] has been updated in previous iteration) {

 foreach node v such that (w, v) E {

 if (M[v] > M[w] + cwv) {

 M[v] M[w] + cwv

 predecessor[v] w

 }

 }

 }

 }

 If no M[w] value changed in iteration i, stop.

 }

 return M[t]

}

20

Shortest Paths: Practical Improvements

Theorem. Throughout the algorithm,

 M[v] is length of some s-v path, and

 after i rounds of updates, the value M[v] is no larger than the length of

shortest s-v path using i edges.

 Almost the same algorithm for calculating shortest v-t path (see book).

Q. Spot the differences! (at home)

Overall impact. [Bellman-Ford algorithm, 1958]

 Memory: O(m + n).

 Running time: O(mn) worst case, but substantially faster in practice.

