6.8 Shortest Paths

- Shortest path problem
- DP approach
- analysis
- recursive function
- iterative algorithm
- improved algorithm (Bellman-Ford)

Shortest Paths

Shortest path problem. Given a directed graph $G=(\mathrm{V}, \mathrm{E})$, with edge weights C_{vw} find shortest path from node s to node t .
allow negative weights
Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w . Find negative cycles!

We have already seen an algorithm for shortest paths...

Dijkstra's Algorithm

For each unexplored node, explicitly maintain $\pi(v)=\min _{(u, v): u \in S} O P T(u)+c_{u v}$

- Next node to explore = node with minimum $\pi(\mathrm{v})$.
- Add v to $\mathrm{S}, \mathrm{OPT}(\mathrm{v})=\pi(\mathrm{v})$.
- For each incident edge $\mathrm{e}=(\mathrm{v}, \mathrm{w})$, update $\pi(w)=\min \left\{\pi(w), \pi(v)+c_{c w}\right\}$.

TUDelft

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to Dijkstra when run on this graph?


```
Dijkstra:
Next node to explore
\(=\) node with minimum \(\pi(v)\).
```

$\pi(v)=\min _{(u, v): u \in S} O P T(u)+c_{u v}$
Q. What can we do to fix Dijkstra's shortest path algorithm?

Shortest Paths: Failed Attempts

Q. What is the distance from s to t according to Dijkstra when run on this graph?
A. +1 instead of -1


```
Dijkstra:
Next node to explore
\(=\) node with minimum \(\pi(v)\).
```

$\pi(v)=\min _{(u, v): u \in S} O P T(u)+c_{u v}$
Q. What can we do to fix Dijkstra's shortest path algorithm?

Re-weighting. What happens if we add a constant to every edge weight?
A. Dijkstra returns 4 (10) instead of 3 (12).

TUDelft

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Q. What is the desired solution if some path from s to t contains a negative cost cycle?
A. No shortest s-t path exists. (Path needs to have finite steps.)

Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

Dynamic Programming Recipe

Recipe.

- Characterize structure of problem.
- make one decision (eg for one object)
- determine how it depends on subproblem(s)
- Recursively define value of optimal solution
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic Programming Summary

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.

- Multi-way choice: segmented least squares.
- More subproblems per choice (intervals): RNA secondary structure.
- Two inputs: sequence alignment
- Adding a new variable: knapsack, shortest-path (Bellman-Ford).

Top-down vs. bottom-up (or from left to right): different people have different intuitions.

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v :
Q. Which decision to make in one step?
Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

Shortest Paths: Dynamic Programming: False Start

DP recipe. Characterize structure of finding shortest path from s to v :
Q. Which decision to make in one step?
A. "Via which edge (w, v) is the shortest path from s ?"
Q. How does it depend on subproblems?

A. If we use (w, v): "what is (length of) shortest path to w ?"
Q. What is the recursive definition of the optimal solution?

However, OPT(w) is not really a (smaller) sub-problem... How can we make sure that this is really smaller?

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v :
Q. Which decision to make in one step?
Q. How does it depend on subproblems?

Q. What is the recursive definition of the optimal solution?

Shortest Paths: Dynamic Programming

DP recipe. Characterize structure of finding shortest path from s to v :
Q. Which decision to make in one step?
A. "Via which edge (w, v) is the shortest path with at most i edges?"
Q. How does it depend on subproblems?
A. If we use (w, v): what is shortest path to w using at most $\mathrm{i}-1$ edges?
Q. What is the recursive definition of the optimal solution?

Shortest Paths: Dynamic Programming

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{v})=$ length of shortest $\mathrm{s}-\mathrm{v}$ path P using at most i edges.

- OPT(i, v) uses an edge (w, v) and
- then selects best s-w path using at most i-1 edges (recursively)

Remark. By previous observation, if no negative cycles, then $\operatorname{OPT}(\mathrm{n}-1, \mathrm{v})=$ length of shortest $\mathrm{s}-\mathrm{v}$ path.

Remark. The approach in this slide differs from Kleinberg (p293-294):
. we reason backwards from t and have s as the base case

- we define OPT(i,s)=0 for all and don't need OPT(i-1,v)

Shortest Paths: Implementation

```
Shortest-Path(G, s) {
    foreach node v \in V
        M[0, v] \leftarrow < 
    for i = 0 to n-1
        M[i, s] \leftarrow0
    for i = 1 to n-1
        foreach node v \in V
            M[i, v] \leftarrow min
}
```

Q. What is the time complexity?
Q. What is the space complexity?

Shortest Paths: Implementation

```
Shortest-Path(G, s) {
    foreach node v \in V
        M[0, v] \leftarrow < 
    for i = 0 to n-1
        M[i, s] \leftarrow0
    for i = 1 to n-1
        foreach node v \in V
            M[i, v] \leftarrow min
}
```

Q. What is the time complexity?
A. $\Theta(\mathrm{mn})$ time
Q. What is the space complexity?
A. $\Theta\left(\mathrm{n}^{2}\right)$ space.

Shortest Paths: Practical Improvements

```
Shortest-Path(G, s) {
    foreach node v \in V
        M[0, v] \leftarrow < 
    for i = 0 to n-1
        M[i, s] \leftarrow 0
    for i = 1 to n-1
        foreach node v \in V
            M[i,v] \leftarrow min}(w,v)\inE {M[i-1,w] + c cwv 
}
```

Q. How to reduce use of memory?

Shortest Paths: Practical Improvements

```
Shortest-Path(G, s) {
    foreach node v \in V
        M[0, v] }\leftarrow
    for i = 0 to n-1
        M[i, s] \leftarrow0
    for i = 1 to n-1
        foreach node v \in V
            M[i, v] \leftarrow min}(w,v)\inE {M[i-1,w] + cmv }
}
```

Q. How to reduce use of memory?
A. Maintain only one array $\mathrm{M}[\mathrm{v}]=$ length of shortest $\mathrm{s}-\mathrm{v}$ path that we have found so far (using i or i-1 edges).
Q. But how then to recover found solution (path)?
A. Maintain predecessor array predecessor [v] = best step found so far
 changed in previous iteration. ("push-based")

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
    foreach node v \in V {
        M[v] }\leftarrow
        predecessor[v] \leftarrow\phi
    }
    M[s] = 0
    for i = 1 to n-1 {
        foreach node w \in V {
            if (M[w] has been updated in previous iteration) {
                foreach node v such that (w, v) E E {
                    if (M[v] > M[w] + C Cwv {
                                M[v] }\leftarrow\textrm{M}[\textrm{w}]+\mp@subsup{\textrm{C}}{\textrm{wv}}{
                                predecessor[v] \leftarroww
                        }
                }
            }
        }
    }
}
```

Q. When can we stop?

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
    foreach node v \in V {
        M[v] \leftarrow < 
        predecessor[v] \leftarrow\phi
    }
    M[s] = 0
    for i = 1 to n-1 {
        foreach node w \in V {
            if (M[w] has been updated in previous iteration) {
                foreach node v such that (w, v) \in E {
                        if (M[v] > M[w] + C cwv ) {
                                M[v] \leftarrowM[w] + C cwv
                                predecessor[v] \leftarrow w
                        }
                }
            }
        }
        If no M[w] value changed in iteration i, stop.
    }
    return M[t]
}
```


Shortest Paths: Practical Improvements

Theorem. Throughout the algorithm,

- $M[v]$ is length of some $s-v$ path, and
- after i rounds of updates, the value $\mathrm{M}[\mathrm{v}]$ is no larger than the length of shortest s-v path using $\leq i$ edges.
- Almost the same algorithm for calculating shortest v-t path (see book).
Q. Spot the differences! (at home)

Overall impact. [Bellman-Ford algorithm, 1958]

- Memory: $O(m+n)$.
- Running time: $\mathrm{O}(\mathrm{mn})$ worst case, but substantially faster in practice.

