
6.8  Shortest Paths 

 Shortest path problem 

 DP approach 

 analysis 

 recursive function 

 iterative algorithm 

 improved algorithm (Bellman-Ford) 
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Shortest Paths 

Shortest path problem.  Given a directed graph G = (V, E), with edge 

weights cvw, find shortest path from node s to node t. 

 

 

Ex.  Nodes represent agents in a financial setting and cvw is cost of 

transaction in which we buy from agent v and sell immediately to w. 

Find negative cycles! 

 

 

 

 

 

 

 

 

We have already seen an algorithm for shortest paths… 
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Dijkstra's Algorithm 

For each unexplored node, explicitly maintain  

 

 Next node to explore = node with minimum (v). 

 Add v to S,   OPT(v) = (v). 

 For each incident edge e = (v, w), update 
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 (w )  min  (w ),   (v )  c
cw .
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Shortest Paths:  Failed Attempts 

Q.  What is the distance from s to t according to  

     Dijkstra when run on this graph? 

 

 

 

 

 

 

Q.  What can we do to fix Dijkstra’s shortest path algorithm? 
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Next node to explore 
= node with minimum (v). 



 (v )  min
( u, v ) : u  S

OPT (u)  c
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Shortest Paths:  Failed Attempts 

Q.  What is the distance from s to t according to  

     Dijkstra when run on this graph? 

A.  +1 instead of -1 

 

 

 

 

Q.  What can we do to fix Dijkstra’s shortest path algorithm? 

Re-weighting.  What happens if we add a constant to every edge weight? 

A.  Dijkstra returns 4 (10) instead of 3 (12). 
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Next node to explore 
= node with minimum (v). 
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Shortest Paths:  Negative Cost Cycles 

Negative cost cycle. 

 

 

 

 

Q.  What is the desired solution if some path from s to t contains a 

negative cost cycle?  

A.  No shortest s-t path exists. (Path needs to have finite steps.) 

 

Observation.  If some path from s to t contains a negative cost cycle, there 

does not exist a shortest s-t path; otherwise, there exists one that is 

simple. 
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Dynamic Programming Recipe 

Recipe. 

 Characterize structure of problem. 

– make one decision (eg for one object) 

– determine how it depends on subproblem(s) 

 Recursively define value of optimal solution 

 Compute value of optimal solution. 

 Construct optimal solution from computed information. 
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Dynamic Programming Summary 

Dynamic programming techniques. 

 Binary choice:  weighted interval scheduling. 

 Multi-way choice:  segmented least squares. 

 More subproblems per choice (intervals):  RNA secondary structure. 

 Two inputs: sequence alignment 

 Adding a new variable:  knapsack, shortest-path (Bellman-Ford). 

 

Top-down vs. bottom-up (or from left to right):  different people have 

different intuitions. 
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Shortest Paths:  Dynamic Programming: False Start 

DP recipe. Characterize structure of finding shortest path from s to v: 

 

Q.  Which decision to make in one step? 

 

 

Q.  How does it depend on subproblems? 

 

 

 

Q. What is the recursive definition of the optimal solution? 
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Shortest Paths:  Dynamic Programming: False Start 

DP recipe. Characterize structure of finding shortest path from s to v: 

 

Q.  Which decision to make in one step? 

A.  “Via which edge (w,v) is the shortest path from s?” 

 

Q.  How does it depend on subproblems? 

A.  If we use (w,v): “what is (length of) shortest path to w?” 

 

 

Q. What is the recursive definition of the optimal solution? 

 

 

 

 

However, OPT(w) is not really a (smaller) sub-problem… 

How can we make sure that this is really smaller? 
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OPT ( v ) 

0 if v  s

(w ,v)  E
min OPT (w )  c
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Shortest Paths:  Dynamic Programming 

DP recipe. Characterize structure of finding shortest path from s to v: 

 

Q.  Which decision to make in one step? 

 

 

Q.  How does it depend on subproblems? 

 

 

 

Q. What is the recursive definition of the optimal solution? 
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Shortest Paths:  Dynamic Programming 

DP recipe. Characterize structure of finding shortest path from s to v: 

 

Q.  Which decision to make in one step? 

A.  “Via which edge (w,v) is the shortest path with at most i edges?” 

 

Q.  How does it depend on subproblems? 

A.  If we use (w,v): what is shortest path to w using at most i-1 edges? 

 

 

Q. What is the recursive definition of the optimal solution? 
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Shortest Paths:  Dynamic Programming 

Def.  OPT(i, v) = length of shortest s-v path P using at most i edges. 

 

 OPT(i,v) uses an edge (w,v) and 

– then selects best s-w path using at most i-1 edges (recursively) 

 

 

 

 

 

 

Remark.  By previous observation, if no negative cycles, then 

OPT(n-1, v) = length of shortest s-v path. 

 

Remark.  The approach in this slide differs from Kleinberg (p293-294): 

 we reason backwards from t and have s as the base case 

 we define OPT(i,s)=0 for all and don’t need OPT(i-1,v) 
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Shortest Paths:  Implementation 

 

 

 

 

 

 

 

 

 

 

Q.  What is the time complexity? 

 

 

Q.  What is the space complexity? 

 

Shortest-Path(G, s) { 

   foreach node v  V 

      M[0, v]   

   for i = 0 to n-1 

      M[i, s]  0 

 

   for i = 1 to n-1 

      foreach node v  V 

         M[i, v]  min(w,v)E {M[i-1, w] + cwv } 

} 
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Shortest Paths:  Implementation 

 

 

 

 

 

 

 

 

 

 

Q.  What is the time complexity? 

A.  (mn) time 

 

Q.  What is the space complexity? 

A.  (n2) space. 

 

Shortest-Path(G, s) { 

   foreach node v  V 

      M[0, v]   

   for i = 0 to n-1 

      M[i, s]  0 

 

   for i = 1 to n-1 

      foreach node v  V 

         M[i, v]  min(w,v)E {M[i-1, w] + cwv } 

} 
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Shortest Paths: Practical Improvements 

 

 

 

 

 

 

 

 

 

 

Q.  How to reduce use of memory? 

 

Shortest-Path(G, s) { 

   foreach node v  V 

      M[0, v]   

   for i = 0 to n-1 

      M[i, s]  0 

 

   for i = 1 to n-1 

      foreach node v  V 

         M[i, v]  min(w,v)E {M[i-1, w] + cwv } 

} 
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Shortest Paths: Practical Improvements 

 

 

 

 

 

 

 

 

 

 

Q.  How to reduce use of memory? 

A.  Maintain only one array M[v] = length of shortest s-v path that we have 

found so far (using i or i-1 edges). 

Q. But how then to recover found solution (path)? 

A. Maintain predecessor array predecessor[v] = best step found so far 

Observation.  No need to check edges of the form (w, v) unless M[w] 

changed in previous iteration. (“push-based”) 

 

Shortest-Path(G, s) { 

   foreach node v  V 

      M[0, v]   

   for i = 0 to n-1 

      M[i, s]  0 

 

   for i = 1 to n-1 

      foreach node v  V 

         M[i, v]  min(w,v)E {M[i-1, w] + cwv } 

} 



Bellman-Ford:  Efficient Implementation 

Push-Based-Shortest-Path(G, s, t) { 

   foreach node v  V { 

      M[v]   

      predecessor[v]    

   } 

 

   M[s] = 0 

   for i = 1 to n-1 { 

      foreach node w  V { 

         if (M[w] has been updated in previous iteration) { 

            foreach node v such that (w, v)  E { 

               if (M[v] > M[w] + cwv) { 

                  M[v]  M[w] + cwv  

                  predecessor[v]  w 

               } 

            } 

         } 

      } 

   } 

} 

Q. When can we stop? 
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Bellman-Ford:  Efficient Implementation 

Push-Based-Shortest-Path(G, s, t) { 

   foreach node v  V { 

      M[v]   

      predecessor[v]    

   } 

 

   M[s] = 0 

   for i = 1 to n-1 { 

      foreach node w  V { 

         if (M[w] has been updated in previous iteration) { 

            foreach node v such that (w, v)  E { 

               if (M[v] > M[w] + cwv) { 

                  M[v]  M[w] + cwv  

                  predecessor[v]  w 

               } 

            } 

         } 

      } 

      If no M[w] value changed in iteration i, stop. 

   } 

   return M[t] 

} 



20 

Shortest Paths:  Practical Improvements 

Theorem.  Throughout the algorithm,  

 M[v] is length of some s-v path, and  

 after i rounds of updates, the value M[v] is no larger than the length of 

shortest s-v path using  i edges. 

 Almost the same algorithm for calculating shortest v-t path (see book). 

Q. Spot the differences! (at home) 

 

Overall impact.  [Bellman-Ford algorithm, 1958] 

 Memory:  O(m + n). 

 Running time:  O(mn) worst case, but substantially faster in practice. 

 


