
5. Solving recurrences

2

Q. How to prove that the run-time of merge sort is O(n log n)?

A.

Time Complexity Analysis of Merge Sort

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

3

Q. How to prove that the run-time of merge sort is O(n log n)?

A. We have seen several methods:

 Recursion tree

 Substitution (by induction)

Time Complexity Analysis of Merge Sort

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

Proof by Recursion Tree

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(2
)

T(2
)

T(2
)

T(2) T(2
)

T(2
)

T(2
)

T(2
)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

merge time: n log2n

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

#nodes(merge time):

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

5

Proof by Induction/Substitution (when n is power of 2)

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

assume n is a power of 2

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

6

Proof by Induction/Substitution (when n is power of 2)

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

 Base case: n = 1.

 Induction hypothesis: T(n) = n log2 n.

 Step: show that T(2n) = 2n log2 (2n).

Q. How do we proof this step?

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

Now for 2n (not n+1 as we are used to) !

assume n is a power of 2

7

Proof by Induction/Substitution (when n is power of 2)

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

 Base case: n = 1.

 Induction hypothesis: T(n) = n log2 n.

 Step: show that T(2n) = 2n log2 (2n).

T (2n) 2T (n) 2n

 2n log
2
n 2n

 2n log
2
(2n)

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

Now for 2n (not n+1 as we are used to) !

Induction hypothesis

assume n is a power of 2

8

Proof by Induction/Substitution (when n is power of 2)

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

 Base case: n = 1.

 Induction hypothesis: T(n) = n log2 n.

 Step: show that T(2n) = 2n log2 (2n).

T (2n) 2T (n) 2n

 2n log 2 n 2n

 2n log 2 (2n) 1 2n

 2n log 2 (2n)

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

Now for 2n (not n+1 as we are used to) !

nn log1)2(log
2

assume n is a power of 2

9

Proof by Induction/Substitution (with rounding)

Claim. If T(n) satisfies the following recurrence, then T(n) n log n.

Pf. (by induction on n)

 Base case: n = 1.

 Define n1 = n / 2, n2 = n / 2.

 Hypothesis: assume true for 1, 2, ... , n–1.

 Step:

T(n)

 0 if n 1

T n / 2

solve left half

 T n / 2

solve right half

 n

merging

otherwise

log2n

10

Proof by Induction/Substitution (with rounding)

Claim. If T(n) satisfies the following recurrence, then T(n) n log n.

Pf. (continued)

 Step:

T (n) T (n
1
) T (n

2
) n

 n
1

log n
1 n

2
log n

2 n

 n log n

T(n)

 0 if n 1

T n / 2

solve left half

 T n / 2

solve right half

 n

merging

otherwise

log2n

Induction hypothesis

11

Proof by Induction/Substitution (with rounding)

Claim. If T(n) satisfies the following recurrence, then T(n) n log n.

Pf. (continued)

 Step:

T (n) T (n
1
) T (n

2
) n

 n
1

log n
1 n

2
log n

2 n

 n
1

log n
1 n

2
log n

1 n

 n log n
1 n

 n log n

T(n)

 0 if n 1

T n / 2

solve left half

 T n / 2

solve right half

 n

merging

otherwise

log2n

12

Proof by Induction/Substitution (with rounding)

Claim. If T(n) satisfies the following recurrence, then T(n) n log n.

Pf. (continued)

 Step:

T (n) T (n
1
) T (n

2
) n

 n
1

log n
1 n

2
log n

2 n

 n
1

log n
1 n

2
log n

1 n

 n log n
1 n

 n (log n 1) n

 n log n

n
1

 n / 2

 2
log n

/ 2

 2
log n

/ 2

 log n
1
 log n 1

 log n
1 log n 1

T(n)

 0 if n 1

T n / 2

solve left half

 T n / 2

solve right half

 n

merging

otherwise

Because right side is an integer,

rounding to nearest integer is OK.

log2n

13

Q. How to prove that the run-time of merge sort is O(n log n)?

A. We have seen several methods:

 Recursion tree

 Substitution (by induction)

Time Complexity Analysis of Merge Sort

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

14

Q. How to prove that the run-time of merge sort is O(n log n)?

A. We have seen several methods:

 Recursion tree

 Substitution (by induction)

Time Complexity Analysis of Merge Sort

T(n)

0 if n 1

2T (n / 2)

sorting both halves

 n

merging

otherwise

We don’t like proofs. Can’t you give
us a general rule for the complexity

of recursive functions?

15

General Recursion Tree

for a 1, b 1, T(n)

 (1) if n 1

aT (n /b)

recursive calls

1 2 4 3 4
 f (n)

combining

1 2 3
otherwise

16

General Recursion Tree

T(n)

T(n/b) T(n/b)

f(n)

a f(n/b)

#nodes(time):

a

T(n/b)
a a a

for a 1, b 1, T(n)

 (1) if n 1

aT (n /b)

recursive calls

1 2 4 3 4
 f (n)

combining

1 2 3
otherwise

General Recursion Tree

an bb na
loglog

T(n)

T(n/b) T(n/b)

T(n/b2

)
T(n/b2

)
T(n/b2

)
T(n/b2

)

T(1) T(1) T(1) T(1) T(1) T(1
)

T(1) T(1)

f(n)

T(n / bk)

a f(n/b)

a2

f(n/b2)

ak f(n /
bk)

 f(1)

. . .

. . .

-1
+l

og
b
n

#nodescombining:

a

T(n/b)
a a a

operations in the leaves

nba
log

n

k

k

ka
b

b

b

n
fan

log1

0

log

for a 1, b 1, T(n)

 (1) if n 1

aT (n /b)

recursive calls

1 2 4 3 4
 f (n)

combining

1 2 3
otherwise

18

So, where

 first term is cost of all subproblems of size 1, and

 second term cost for combining in each level.

Three common cases:

 Running time dominated by cost at leaves

 Running time evenly distributed throughout the tree

 Running time dominated by cost at root

Consequently, to solve the recurrence, we need only to characterize the

dominant term, or

Master Method

abn
log

n

k

k

ka
b

b

b

n
fannT

log1

0

log
)(

abn
log

)(nf

for a 1, b 1, T(n)

 (1) if n 1

aT (n /b)

recursive calls

1 2 4 3 4
 f (n)

combining

1 2 3
otherwise

19

Given a recurrence of the form

We can distinguish three common cases:

1. Running time dominated by cost at leaves:

 if then

2. Running time evenly distributed throughout the tree:

 if then

3. Running time dominated by cost at root:

 if then

The master method cannot solve every recurrence of this form.

Master Method

abnnf
log

)()()(nfnT

 abnnf
log

)(nnnT
ab log)(

log

abnOnf
log

)(abnnT
log

)(

T(n) aT (n /b) f (n)

If f(n) satisfies regularity
condition: a f(n/b) ≤ c f(n)
for some c < 1
(polynomials always do)

for an ε > 0

for an ε > 0

20

Summary Master Method

 Extract a, b, and f(n) from a given recurrence

 Determine

 Compare f(n) and asymptotically

 Determine appropriate Master Method case and apply:

1. Running time dominated by cost at leaves:

 if then

2. Running time evenly distributed throughout the tree:

 if then

3. Running time dominated by cost at root:

 if then

log b a
n

log b a
n

abnnf
log

)()()(nfnT

 abnnf
log

)(nnnT
ab log)(

log

abnOnf
log

)(abnnT
log

)(

Case 3: Only If f(n) satisfies regularity condition:
a f(n/b) ≤ c f(n) for some c < 1
(polynomials always do)

for an ε > 0

for an ε > 0

21

Examples

 Extract a, b, and f(n) from a given recurrence

 Determine

 Compare f(n) and asymptotically

 Determine appropriate Master Method case, and apply

Example. Analyze Merge Sort using the Master Method:

Q. What is dominant? (leaves, equal, root node)

log b a
n

log b a
n

nnnba

nnTnT

ab

2loglog 2;2,2

)()2/(2)(

22

Examples

 Extract a, b, and f(n) from a given recurrence

 Determine

 Compare f(n) and asymptotically

 Determine appropriate Master Method case, and apply

Example. Analyze Merge Sort using the Master Method:

 this is case 2, , so

log b a
n

log b a
n

)()(

;2,2

)()2/(2)(

2loglog 2

nnf

nnnba

nnTnT

ab

 nnnT
ab log)(

log

 abnnf
log

)(

23

Examples

Q. Analyze complexity of binary search using the master method (1 min)

A. Analysis:

1)2/()(nTnT

Binary-search(A, p, r, s):

 q(p+r)/2

 if A[q]=s then return q

 else if A[q]>s then

 Binary-search(A, p, q-1, s)

 else Binary-search(A, q+1, r, s)

24

Examples

Q. Analyze complexity of binary search using the master method (1 min)

A. Analysis:

This is case 2, , so:

)1()(

)1(;2,1

1)2/()(

01loglog 2

nf

nnnba

nTnT

ab

 nnnnT
ab loglog)(

log

Binary-search(A, p, r, s):

 q(p+r)/2

 if A[q]=s then return q

 else if A[q]>s then

 Binary-search(A, p, q-1, s)

 else Binary-search(A, q+1, r, s)

 abnnf
log

)(

25

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

 Q. What is dominant? (leaves, equal, root node)

)()(

...;3,9
9log 3

nnf

nba

nnTnT)3/(9)(

26

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

This is case 1, , so:

)()(

;3,9
29log 3

nnf

nnba

 2log
)(nnnT

ab

nnTnT)3/(9)(

f (n) O n
log b a

27

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

 Q. What is dominant? (leaves, equal, root node)

)log()(

;4,3
793.03log 4

nnnf

nnba

nnnTnT log)4/(3)(

28

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

This is case 3, , so:

Check regularity condition:

OK, for example for c=3/4 (and this c < 1)

)log()(

;4,3
793.03log 4

nnnf

nnba

 nnnfnT log)()(

nnnTnT log)4/(3)(

f (n) n
log b a

WARNING: is not a polynomial
Check regularity condition.

)(log)4/3()4/log()4/(3)/(ncfnnnnbnaf

29

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

 Q. What is dominant? (leaves, equal, root node)

)log()(

;2,2
2log 2

nnnf

nnba

nnnTnT log)2/(2)(

30

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

This is not case 3, , for c>0, nor one of the others!

Back to substitution method and induction proof (try n log2n).

)log()(

;2,2
2log 2

nnnf

nnba

nnnTnT log)2/(2)(

f (n) n
log b a

Because nc for c>0 is (log n),
so n1+c is (n log n)
so n log n is not (n1+c)

I’ll be
back!

31

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

 Q. What is dominant? (leaves, equal, root node)

)()(

...;2,4

3

4log 2

nnf

nba

3
)2/(4)(nnTnT

32

Examples

Q. Use the master method to solve the following recurrence relation:

A. Analysis:

This is case 3, , so:

Check regularity condition:

OK, for example for c=3/4 (and this c < 1)

)()(

;2,4

3

24log 2

nnf

nnba

 3
)()(nnfnT

3
)2/(4)(nnTnT

f (n) n
log b a

)()8/4(2/4)/(
33

ncfnnbnaf

