
5.  Solving recurrences 
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Q.  How to prove that the run-time of merge sort is O(n log n)? 

A.  

Time Complexity Analysis of Merge Sort 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise











3 

 

 

 

 

 

Q.  How to prove that the run-time of merge sort is O(n log n)? 

A.  We have seen several methods: 

 Recursion tree 

 Substitution (by induction) 

 

 

Time Complexity Analysis of Merge Sort 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise











Proof by Recursion Tree 
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2k (n / 2k) 

n/2 (2) 

. . . 

. . . 
log2n 

merge time: n log2n 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise









#nodes(merge time): 
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Proof by Induction/Substitution (when n is power of 2) 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

 

 

 

 

 

 

Pf.  (by induction on n) 

assume n is a power of 2 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise
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Proof by Induction/Substitution (when n is power of 2) 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

 

 

 

 

 

 

Pf.  (by induction on n) 

 Base case:  n = 1. 

 Induction hypothesis:  T(n) =  n log2 n. 

 Step:  show that T(2n) =  2n log2 (2n). 

Q. How do we proof this step? 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise









Now for 2n  (not n+1 as we are used to) ! 

assume n is a power of 2 
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Proof by Induction/Substitution (when n is power of 2) 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

 

 

 

 

 

 

Pf.  (by induction on n) 

 Base case:  n = 1. 

 Induction hypothesis:  T(n) =  n log2 n. 

 Step:  show that T(2n) =  2n log2 (2n). 



T (2n )  2T (n )    2n

 2n log
2
n  2n



 2n log
2
(2n )

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise









Now for 2n  (not n+1 as we are used to) ! 

Induction hypothesis 

assume n is a power of 2 
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Proof by Induction/Substitution (when n is power of 2) 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

 

 

 

 

 

 

Pf.  (by induction on n) 

 Base case:  n = 1. 

 Induction hypothesis:  T(n) =  n log2 n. 

 Step:  show that T(2n) =  2n log2 (2n). 

  



T (2n )  2T (n )    2n

 2n log 2 n    2n

 2n log 2 (2n )  1     2n

 2n log 2 (2n )

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise









Now for 2n  (not n+1 as we are used to) ! 

nn log1)2(log
2



assume n is a power of 2 
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Proof by Induction/Substitution (with rounding) 

Claim.  If T(n) satisfies the following recurrence, then T(n)   n log n. 

 

 

 

 

 

Pf.   (by induction on n) 

 Base case:  n = 1. 

 Define n1 = n / 2,  n2 = n / 2. 

 Hypothesis:  assume true for 1, 2, ... , n–1. 

 Step: 

  



T( n ) 

 0 if  n  1

T n / 2  

solve left half

 T n / 2  

solve right half

 n

merging

otherwise









log2n 
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Proof by Induction/Substitution (with rounding) 

Claim.  If T(n) satisfies the following recurrence, then T(n)   n log n. 

 

 

 

 

 

Pf.   (continued) 

 Step: 



T (n )  T (n
1
)    T (n

2
)    n

 n
1

log n
1    n

2
log n

2     n

 n log n 

  



T( n ) 

 0 if  n  1

T n / 2  

solve left half

 T n / 2  

solve right half

 n

merging

otherwise









log2n 

Induction hypothesis 
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Proof by Induction/Substitution (with rounding) 

Claim.  If T(n) satisfies the following recurrence, then T(n)   n log n. 

 

 

 

 

 

Pf.   (continued) 

 Step: 



T (n )  T (n
1
)    T (n

2
)    n

 n
1

log n
1    n

2
log n

2     n

 n
1

log n
1     n

2
log n

1     n

 n log n
1     n



 n log n 

  



T( n ) 

 0 if  n  1

T n / 2  

solve left half

 T n / 2  

solve right half

 n

merging

otherwise









log2n 
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Proof by Induction/Substitution (with rounding) 

Claim.  If T(n) satisfies the following recurrence, then T(n)   n log n. 

 

 

 

 

 

Pf.   (continued) 

 Step: 



T (n )  T (n
1
)    T (n

2
)    n

 n
1

log n
1    n

2
log n

2     n

 n
1

log n
1     n

2
log n

1     n

 n log n
1     n

 n ( log n  1 )    n

 n log n 


n
1

 n / 2 

 2
log n 

/ 2 

 2
log n 

/ 2

 log n
1
 log n  1

 log n
1   log n  1

  



T( n ) 

 0 if  n  1

T n / 2  

solve left half

 T n / 2  

solve right half

 n

merging

otherwise









Because right side is an integer,  

rounding to nearest integer is OK. 

log2n 



13 

 

 

 

 

 

Q.  How to prove that the run-time of merge sort is O(n log n)? 

A.  We have seen several methods: 

 Recursion tree 

 Substitution (by induction) 

 

 

Time Complexity Analysis of Merge Sort 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise
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Q.  How to prove that the run-time of merge sort is O(n log n)? 

A.  We have seen several methods: 

 Recursion tree 

 Substitution (by induction) 

 

 

Time Complexity Analysis of Merge Sort 

  



T( n ) 

0 if  n  1

2T (n / 2 )

sorting both halves

 n

merging

otherwise









We don’t like proofs. Can’t you give 
us a general rule  for the complexity 

of recursive functions? 
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General Recursion Tree 



for a  1, b  1, T( n ) 

 (1) if  n  1

aT (n /b)

recursive calls

1 2 4 3 4 
 f ( n )

combining

1 2 3 
otherwise
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General Recursion Tree 

T(n) 

T(n/b) T(n/b) 

f(n) 

a f(n/b) 

#nodes(time): 

a 

T(n/b) 
a a a 



for a  1, b  1, T( n ) 

 (1) if  n  1

aT (n /b)

recursive calls

1 2 4 3 4 
 f ( n )

combining

1 2 3 
otherwise











General Recursion Tree 

an bb na
loglog
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a f(n/b) 

a2 
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. . . 

. . . 
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n 

#nodescombining: 

a 

T(n/b) 
a a a 

operations in the leaves 
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log
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for a  1, b  1, T( n ) 

 (1) if  n  1

aT (n /b)

recursive calls

1 2 4 3 4 
 f ( n )

combining

1 2 3 
otherwise
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So,                                                     where 

 

 first term is cost of all        subproblems of size 1, and  

 second term cost for combining in each level. 

 

Three common cases: 

 Running time dominated by cost at leaves 

 Running time evenly distributed throughout the tree 

 Running time dominated by cost at root 

 

Consequently, to solve the recurrence, we need only to characterize the 

dominant term,         or 

Master Method 

abn
log

  














n

k

k
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b

b

b

n
fannT

log1
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)(nf



for a  1, b  1, T( n ) 

 (1) if  n  1

aT (n /b)

recursive calls

1 2 4 3 4 
 f ( n )

combining

1 2 3 
otherwise
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Given a recurrence of the form 

 

We can distinguish three common cases: 

1. Running time dominated by cost at leaves: 

 if                                     then 

 

2. Running time evenly distributed throughout the tree: 

 if                                      then 

 

3. Running time dominated by cost at root: 

 if                                      then 

 

 

 

 

The master method cannot solve every recurrence of this form. 

Master Method 

 


abnnf
log

)(  )()( nfnT 

 abnnf
log

)(   nnnT
ab log)(

log


 


abnOnf
log

)(  abnnT
log

)( 



T( n)  aT (n /b)  f (n)

If f(n) satisfies regularity 
condition:   a f(n/b) ≤ c f(n) 
for some c < 1 
(polynomials always do) 

for an ε > 0 

for an ε > 0 
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Summary Master Method 

 Extract a, b, and f(n) from a given recurrence 

 Determine  

 Compare f(n) and          asymptotically  

 Determine appropriate Master Method case and apply: 

 

1. Running time dominated by cost at leaves: 

 if                                     then 

 

2. Running time evenly distributed throughout the tree: 

 if                                      then 

 

3. Running time dominated by cost at root: 

 if                                      then 

 

log b a
n

log b a
n

 


abnnf
log

)(  )()( nfnT 

 abnnf
log

)(   nnnT
ab log)(

log


 


abnOnf
log

)(  abnnT
log

)( 

Case 3: Only If f(n) satisfies regularity condition:   
a f(n/b) ≤ c f(n)  for some c < 1 
(polynomials always do) 

for an ε > 0 

for an ε > 0 
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Examples 

 Extract a, b, and f(n) from a given recurrence 

 Determine  

 Compare f(n) and          asymptotically  

 Determine appropriate Master Method case, and apply 

 

Example.  Analyze Merge Sort using the Master Method: 

 

 

 

Q. What is dominant? (leaves, equal, root node) 

log b a
n

log b a
n

nnnba

nnTnT

ab 



2loglog 2;2,2

)()2/(2)(
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Examples 

 Extract a, b, and f(n) from a given recurrence 

 Determine  

 Compare f(n) and          asymptotically  

 Determine appropriate Master Method case, and apply 

 

Example.  Analyze Merge Sort using the Master Method: 

 

 

 

 

 this is case 2,                           ,  so 

 

log b a
n

log b a
n
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;2,2

)()2/(2)(

2loglog 2

nnf
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nnTnT
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 abnnf
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)( 



23 

Examples 

 

 

 

 

 

 

Q.  Analyze complexity of binary search using the master method (1 min) 

A.  Analysis: 

1)2/()(  nTnT

Binary-search(A, p, r, s): 

   q(p+r)/2  

   if A[q]=s then return q 

   else if A[q]>s then  

        Binary-search(A, p, q-1, s) 

   else Binary-search(A, q+1, r, s)       
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Examples 

 

 

 

 

 

 

Q.  Analyze complexity of binary search using the master method (1 min)  

A.  Analysis: 

 

 

 

 

This is case 2,                         , so: 

)1()(

)1(;2,1

1)2/()(

01loglog 2







nf

nnnba

nTnT

ab

   nnnnT
ab loglog)(

log


Binary-search(A, p, r, s): 

   q(p+r)/2  

   if A[q]=s then return q 

   else if A[q]>s then  

        Binary-search(A, p, q-1, s) 

   else Binary-search(A, q+1, r, s)       

 abnnf
log

)( 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

    Q. What is dominant? (leaves, equal, root node) 

 

)()(

...;3,9
9log 3

nnf

nba





nnTnT  )3/(9)(
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

This is case 1,                            , so: 

)()(

;3,9
29log 3

nnf

nnba





   2log
)( nnnT

ab 

nnTnT  )3/(9)(



f (n )  O n
log b a 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

 Q. What is dominant? (leaves, equal, root node) 

 

)log()(

;4,3
793.03log 4

nnnf

nnba





nnnTnT log)4/(3)( 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

This is case 3,                            , so: 

 

 

Check regularity condition: 

 

 

OK, for example for c=3/4  (and this c < 1) 

)log()(

;4,3
793.03log 4

nnnf

nnba





   nnnfnT log)()( 

nnnTnT log)4/(3)( 



f (n )   n
log b a  

WARNING: is not a polynomial 
Check regularity condition. 

)(log)4/3()4/log()4/(3)/( ncfnnnnbnaf 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

  Q. What is dominant? (leaves, equal, root node) 

)log()(

;2,2
2log 2

nnnf

nnba





nnnTnT log)2/(2)( 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

This is not case 3,                            , for c>0, nor one of the others! 

 

Back to substitution method and induction proof (try  n log2n ). 

)log()(

;2,2
2log 2

nnnf

nnba





nnnTnT log)2/(2)( 



f (n )   n
log b a  

Because nc for c>0 is (log n), 
so n1+c is (n log n) 
so n log n is not (n1+c) 

I’ll be 
back! 
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

  Q. What is dominant? (leaves, equal, root node) 
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...;2,4

3

4log 2

nnf
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Examples 

Q.  Use the master method to solve the following recurrence relation: 

 

 

A.  Analysis: 

 

 

 

This is case 3,                            , so: 

 

 

Check regularity condition: 

 

 

OK, for example for c=3/4  (and this c < 1) 
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