5. Solving recurrences

Time Complexity Analysis of Merge Sort

Q. How to prove that the run-time of merge sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$? A.

Time Complexity Analysis of Merge Sort

Q. How to prove that the run-time of merge sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
A. We have seen several methods:

- Recursion tree
. Substitution (by induction)

Proof by Recursion Tree

\#nodes •(merge time):

Proof by Induction/Substitution (when n is power of 2)

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
 assume n is a power of 2

Pf. (by induction on n)

Proof by Induction/Substitution (when n is power of 2)

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
 assume n is a power of 2

Pf. (by induction on n)

- Base case: $\mathrm{n}=1$.
- Induction hypothesis: $T(n)=n \log _{2} n$.
- Step: show that $T(2 n)=2 n \log _{2}(2 n)$. \longleftarrow Now for $2 n(n o t n+1$ as we are used to) !
Q. How do we proof this step?

Proof by Induction/Substitution (when n is power of 2)

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
 assume n is a power of 2

Pf. (by induction on n)

- Base case: $\mathrm{n}=1$.
- Induction hypothesis: $T(n)=n \log _{2} n$.
- Step: show that $T(2 n)=2 n \log _{2}(2 n)$. \longleftarrow Now for $2 n(n o t n+1$ as we are used to) !

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \longleftarrow \text { Induction hypothesis } \\
& = \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Proof by Induction/Substitution (when n is power of 2)

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

assume n is a power of 2

Pf. (by induction on n)

- Base case: $\mathrm{n}=1$.
- Induction hypothesis: $T(n)=n \log _{2} n$.
- Step: show that $T(2 n)=2 n \log _{2}(2 n)$. \longleftarrow Now for $2 n(n o t n+1$ as we are used to) !

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Proof by Induction/Substitution (with rounding)

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\log n\rceil$.

Pf. (by induction on n)

- Base case: $\mathrm{n}=1$.
- Define $\mathrm{n}_{1}=\lceil\mathrm{n} / 2\rceil, \mathrm{n}_{2}=\lfloor\mathrm{n} / 2\rfloor$.
- Hypothesis: assume true for $1,2, \ldots, \mathrm{n}-1$.
. Step:

Proof by Induction/Substitution (with rounding)

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\log n\rceil$.

Pf. (continued)
. Step:

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\log n_{1}\right\rceil+n_{2}\left\lceil\log n_{2}\right\rceil+n \longleftarrow \text { Induction hypothesis } \\
& =n\lceil\log n\rceil
\end{aligned}
$$

Proof by Induction/Substitution (with rounding)

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\log n\rceil$.

Pf. (continued)
. Step:

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\log n_{1}\right\rceil+n_{2}\left\lceil\log n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\log n_{1}\right\rceil+n_{2}\left\lceil\log n_{1}\right\rceil+n \\
& =n\left\lceil\log n_{1}\right\rceil+n \\
& \leq \\
& =n\lceil\log n\rceil
\end{aligned}
$$

Proof by Induction/Substitution (with rounding)

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\log n\rceil$.
$\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \begin{array}{c}\uparrow \\ \log _{2} n \\ \text { otherwise }\end{array}\end{cases}$

Pf. (continued)

- Step:

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\log n_{1}\right\rceil+n_{2}\left\lceil\log n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\log n_{1}\right\rceil+n_{2}\left\lceil\log n_{1}\right\rceil+n \\
& =n\left\lceil\log n_{1}\right\rceil+n \\
& \leq n(\lceil\log n\rceil-1)+n \\
& =n\lceil\log n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{1} & =\lceil n / 2\rceil \\
& \leq\left\lceil 2^{\lceil\log n\rceil} / 2\right\rceil \\
& =2^{\lceil\log n\rceil} / 2 \\
\Rightarrow & \log n_{1} \leq\lceil\log n\rceil-1 \\
\Rightarrow & \left\lceil\log n_{1}\right\rceil \leq\lceil\log n\rceil-1
\end{aligned}
$$

Because right side is an integer, rounding to nearest integer is OK.

TUDelft

Time Complexity Analysis of Merge Sort

Q. How to prove that the run-time of merge sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
A. We have seen several methods:

- Recursion tree
. Substitution (by induction)

Time Complexity Analysis of Merge Sort

Q. How to prove that the run-time of merge sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?
A. We have seen several methods:

- Recursion tree
. Substitution (by induction)

> We don't like proofs. Can't you give us a general rule for the complexity of recursive functions?

General Recursion Tree

for $a \geq 1, b>1, \quad \mathrm{~T}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ \underset{\substack{1 \\ \text { recursive calls }}}{ }(\underset{\sim}{2} / \sqrt{2})+\underset{\text { combining }}{f(2 n)} & \text { otherwise }\end{cases}$

TUDefft

General Recursion Tree

General Recursion Tree

$$
\text { for } a \geq 1, b>1, \quad \mathrm{~T}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ \underbrace{a T(n / h)}_{\text {recursive calls }}+\underset{\text { combining }}{f(2 \eta)} & \text { otherwise }\end{cases}
$$

\#nodes combining:

Master Method

So, $T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{k=0}^{-1+\log _{b} n} a^{k} f\left(\frac{n}{b^{k}}\right) \quad$ where

- first term is cost of all $n^{\log _{b} a}$ subproblems of size 1 , and
- second term cost for combining in each level.

Three common cases:

- Running time dominated by cost at leaves
- Running time evenly distributed throughout the tree
- Running time dominated by cost at root

Consequently, to solve the recurrence, we need only to characterize the dominant term, $n^{\log _{b} a}$ or $f(n)$

Master Method

Given a recurrence of the form

$$
T(n)=a T(n / b)+f(n)
$$

We can distinguish three common cases:

1. Running time dominated by cost at leaves:
if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. Running time evenly distributed throughout the tree: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
3. Running time dominated by cost at root:
for $a n \varepsilon>0$
if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \quad$ then $\quad T(n)=\Theta(f(n))$
If $f(n)$ satisfies regularity condition: a $f(n / b) \leq c f(n)$ for some c < 1
(polynomials always do)
The master method cannot solve every recurrence of this form.

Summary Master Method

- Extract a, b, and $f(n)$ from a given recurrence
- Determine $n^{\log _{b} a}$
- Compare $f(n)$ and $n^{\log _{b} a}$ asymptotically
- Determine appropriate Master Method case and apply:

1. Running time dominated by cost at leaves:
if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \quad$ then $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ for an $\varepsilon>0$
2. Running time evenly distributed throughout the tree:
if $f(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ then $\quad T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
3. Running time dominated by cost at root:
if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \quad$ then $\quad T(n)=\Theta(f(n)) \quad$ for an $\varepsilon>0$
Case 3: Only If $f(n)$ satisfies regularity condition: a $f(n / b) \leq c f(n)$ for some $c<1$ (polynomials always do)

Examples

- Extract a, b, and $\not \subset(n)$ from a given recurrence
- Determine $n^{\log _{b} a}$
- Compare $\AA(n)$ and $n^{\log _{g} a}$ asymptotically
- Determine appropriate Master Method case, and apply

Example. Analyze Merge Sort using the Master Method:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& a=2, b=2 ; \quad n^{\log _{b} a}=n^{\log _{2} 2}=n
\end{aligned}
$$

Q. What is dominant? (leaves, equal, root node)

Examples

- Extract a, b, and $f(n)$ from a given recurrence
- Determine $n^{\log _{b} a}$
- Compare $f(n)$ and $n^{\log _{b} a}$ asymptotically
- Determine appropriate Master Method case, and apply

Example. Analyze Merge Sort using the Master Method:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& a=2, b=2 ; \quad n^{\log _{b} a}=n^{\log _{2} 2}=n \\
& f(n)=\Theta(n)
\end{aligned}
$$

this is case $2, f(n)=\Theta\left(n^{\log _{b} a}\right)$, so

$$
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)
$$

Examples

```
Binary-search(A, p, r, s):
    q\leftarrow(p+r)/2
    if A[q]=s then return q
    else if A[q]>s then
        Binary-search(A, p, q-1, s)
    else Binary-search(A, q+1, r, s)
```

Q. Analyze complexity of binary search using the master method (1 min)
A. Analysis:

$$
T(n)=T(n / 2)+1
$$

Examples

```
Binary-search(A, p, r, s):
    q\leftarrow(p+r)/2
    if A[q]=s then return q
    else if A[q]>s then
        Binary-search(A, p, q-1, s)
    else Binary-search(A, q+1, r, s)
```

Q. Analyze complexity of binary search using the master method (1 min) A. Analysis:

$$
\begin{aligned}
& T(n)=T(n / 2)+1 \\
& a=1, b=2 ; \quad n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=\Theta(1) \\
& f(n)=\Theta(1)
\end{aligned}
$$

This is case $2, f(n)=\Theta\left(n^{\log _{b} a}\right)$, so:

$$
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)=\Theta(\log n)
$$

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=9 T(n / 3)+n
$$

A. Analysis:

$$
\begin{aligned}
& a=9, b=3 ; \quad n^{\log _{3} 9}=\ldots \\
& f(n)=\Theta(n)
\end{aligned}
$$

Q. What is dominant? (leaves, equal, root node)

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=9 T(n / 3)+n
$$

A. Analysis:

$$
\begin{aligned}
& a=9, b=3 ; \quad n^{\log _{3} 9}=n^{2} \\
& f(n)=\Theta(n)
\end{aligned}
$$

This is case $1, f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$, so:

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{2}\right)
$$

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=3 T(n / 4)+n \log n
$$

A. Analysis:

$$
\begin{aligned}
& a=3, b=4 ; \quad n^{\log _{4} 3}=n^{0.793} \\
& f(n)=\Theta(n \log n)
\end{aligned}
$$

Q. What is dominant? (leaves, equal, root node)

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=3 T(n / 4)+n \log n
$$

A. Analysis:

WARNING: is not a polynomial

$$
\begin{aligned}
& a=3, b=4 ; \quad n^{\log _{4} 3}=n^{0.793} \\
& f(n)=\Theta(n \log n)
\end{aligned}
$$

This is case $3, f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, so:

$$
T(n)=\Theta(f(n))=\Theta(n \log n)
$$

Check regularity condition:

$$
a f(n / b)=3(n / 4) \log (n / 4) \leq(3 / 4) n \log n=c f(n)
$$

OK, for example for $\mathrm{c}=3 / 4$ (and this $\mathrm{c}<1$)

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=2 T(n / 2)+n \log n
$$

A. Analysis:

$$
\begin{aligned}
& a=2, b=2 ; \quad n^{\log _{2} 2}=n \\
& f(n)=\Theta(n \log n)
\end{aligned}
$$

Q. What is dominant? (leaves, equal, root node)

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=2 T(n / 2)+n \log n
$$

A. Analysis:

I'll be

back!

$$
\begin{aligned}
& a=2, b=2 ; \quad n^{\log _{2} 2}=n \\
& f(n)=\Theta(n \log n)
\end{aligned}
$$

This is not case $3, f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, for $c>0$, nor one of the others!
Back to substitution method and induction proof (try $n \log ^{2} n$).

$$
\begin{aligned}
& \text { Because } n^{c} \text { for } c>0 \text { is } \Omega(\log n) \text {, } \\
& \text { so } n^{1+c} \text { is } \Omega(n \log n) \\
& \text { so } n \log n \text { is not } \Omega\left(n^{1+c}\right)
\end{aligned}
$$

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=4 T(n / 2)+n^{3}
$$

A. Analysis:

$$
\begin{aligned}
& a=4, b=2 ; \quad n^{\log _{2} 4}=\ldots \\
& f(n)=\Theta\left(n^{3}\right)
\end{aligned}
$$

Q. What is dominant? (leaves, equal, root node)

Examples

Q. Use the master method to solve the following recurrence relation:

$$
T(n)=4 T(n / 2)+n^{3}
$$

A. Analysis:

$$
\begin{aligned}
& a=4, b=2 ; \quad n^{\log _{2} 4}=n^{2} \\
& f(n)=\Theta\left(n^{3}\right)
\end{aligned}
$$

This is case $3, f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, so:

$$
T(n)=\Theta(f(n))=\Theta\left(n^{3}\right)
$$

Check regularity condition:

$$
\text { af }(n / b)=4(n / 2)^{3}=(4 / 8) n^{3} \leq c f(n)
$$

OK, for example for $\mathrm{c}=3 / 4$ (and this $\mathrm{c}<1$)

