1.1 Stable Matching

Matching Residents to Hospitals

Goal. Given preferences of hospitals and medical school students, design a self-reinforcing admissions process. (Gale-Shapley '62)

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

	favorite		
\downarrow		least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	3rd
Xander	Anna	Bertha	Clara
Youp	Bertha	Anna	Clara
Zeger	Anna	Bertha	Clara

Men's Preference Profile

	favorite		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Youp	Xander	Zeger
Bertha	Xander	Youp	Zeger
Clara	Xander	Youp	Zeger

Women's Preference Profile

Stable Matching Problem

Perfect matching: everyone is matched monogamously.

- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

- In matching M, an unmatched pair m - w is unstable if man m and woman w prefer each other to current partners.
- Unstable pair m-w could each improve by running away (eloping).

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

Stable Matching Problem

Q. Is assignment $\mathrm{X}-\mathrm{C}, \mathrm{Y}-\mathrm{B}, \mathrm{Z}-\mathrm{A}$ stable?

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	3rd
	Anna	Bertha	Clara
Xander	Ana	Clara	
Youp	Bertha	Anna	Clara
Zeger	Anna	Bertha	Clara

Men's Preference Profile

	favorite \downarrow	least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Youp	Xander	Zeger
Bertha	Xander	Youp	Zeger
Clara	Xander	Youp	Zeger

Women's Preference Profile

Stable Matching Problem

Q. Is assignment $\mathrm{X}-\mathrm{C}, \mathrm{Y}-\mathrm{B}, \mathrm{Z}-\mathrm{A}$ stable?

A1. No. Bertha and Xander will hook up.

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3rd
Xander	Anna	Bertha	Clara
Youp	Bertha	Anna	Clara
Zeger	Anna	Bertha	Clara

Men's Preference Profile

	favorite \downarrow	least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Youp	Xander	Zeger
Bertha	Xander	Youp	Zeger
Clara	Xander	Youp	Zeger

Women's Preference Profile

Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?

A2. No. Anna and Xander will hook up.

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	3rd
	Anna	Bertha	Clara
Xander	Anna	Clara	
Youp	Bertha	Anna	Bertha
Zeger	Anna	Clara	

Men's Preference Profile

	favorite \downarrow	least favorite \downarrow	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Youp	Xander	Zeger
Bertha	Xander	Youp	Zeger
Clara	Xander	Youp	Zeger

Women's Preference Profile

Stable Matching Problem

Q. Is assignment $\mathrm{X}-\mathrm{A}, \mathrm{Y}-\mathrm{B}, \mathrm{Z}-\mathrm{C}$ stable?

Men's Preference Profile

Women's Preference Profile

Stable Matching Problem

Q. Is assignment $\mathrm{X}-\mathrm{A}, \mathrm{Y}-\mathrm{B}, \mathrm{Z}-\mathrm{C}$ stable?
A. Yes.

Men's Preference Profile

Women's Preference Profile

Stable Roommate Problem

Q. Do stable matchings always exist?

TUDelft

Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.

- $2 n$ people; each person ranks others from 1 to $2 n-1$.
- Assign roommate pairs so that no unstable pairs.

$A-B, C-D \Rightarrow B-C$ unstable
$A-C, B-D \Rightarrow A-B$ unstable
$A-D, B-C \Rightarrow A-C$ unstable

Observation. Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1st woman on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```


Run-time

Q. How many proposals (iterations of while loop) are made at most?

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1 1
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancé m')
    assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```


Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most n^{2} iterations of while loop. Pf. Each time through the while loop a man proposes to a new woman. There are only n^{2} possible proposals. •

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Victor	A	B	C	D	E
Wim	B	C	D	A	E
Xander	C	D	A	B	E
Youp	D	A	B	C	E
Zeger	A	B	C	D	E

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Anna	W	X	Y	Z	V
Bertha	X	Y	Z	V	W
Clara	Y	Z	V	W	X
Diana	Z	V	W	X	Y
Erika	V	W	X	Y	Z

$n(n-1)+1$ proposals required

Proof of Correctness: Perfection

Claim. All men and women get matched. Pf.

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)
Q. How do we start a proof by contradiction?

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeger is not matched upon termination of algorithm (w.l.o.g. holds for anyone).

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeger is not matched upon termination of algorithm (w.l.o.g. holds for anyone).
- Then some woman, say Anna, is not matched upon termination (n men, n women).
- By Observation 2, Anna was never proposed to.
- But Zeger proposes to everyone, since he ends up unmatched. (Obs.1)
- So he proposes also to Anna!

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeger is not matched upon termination of algorithm (w.l.o.g. holds for anyone).
- Then some woman, say Anna, is not matched upon termination (n men, n women).
- By Observation 2, Anna was never proposed to.
(Once a woman is matched, she never becomes unmatched)
- But Zeger proposes to everyone, since he ends up unmatched. (Obs.1)
- So he proposes also to Anna!
- Contradiction!
- So Zeger is matched!
- No further assumptions on Zeger, so holds for all men. (\forall-intro)
- n men and n women, so also all women are matched. •

Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
Q. How to implement GS algorithm efficiently?
Q. If there are multiple stable matchings, which one does $G S$ find?

